Normalized defining polynomial
\( x^{12} - 6x^{10} + 51x^{8} - 132x^{6} + 441x^{4} + 54x^{2} - 441 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[2, 5]$ |
| |
| Discriminant: |
\(-328683126924509184\)
\(\medspace = -\,2^{36}\cdot 3^{14}\)
|
| |
| Root discriminant: | \(28.82\) |
| |
| Galois root discriminant: | $2^{137/32}3^{25/18}\approx 89.42379121066101$ | ||
| Ramified primes: |
\(2\), \(3\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-1}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3}a^{6}$, $\frac{1}{3}a^{7}$, $\frac{1}{6}a^{8}-\frac{1}{2}$, $\frac{1}{12}a^{9}-\frac{1}{12}a^{8}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}+\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{62472}a^{10}-\frac{279}{20824}a^{8}+\frac{1401}{10412}a^{6}+\frac{1891}{10412}a^{4}+\frac{91}{1096}a^{2}+\frac{75}{20824}$, $\frac{1}{874608}a^{11}-\frac{1}{124944}a^{10}-\frac{10691}{291536}a^{9}-\frac{9575}{124944}a^{8}-\frac{9011}{145768}a^{7}+\frac{6209}{62472}a^{6}+\frac{43539}{145768}a^{5}-\frac{1891}{20824}a^{4}+\frac{13}{2192}a^{3}-\frac{91}{2192}a^{2}-\frac{51985}{291536}a+\frac{10337}{41648}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{456}a^{10}-\frac{1}{456}a^{8}+\frac{23}{228}a^{6}-\frac{9}{76}a^{4}+\frac{11}{8}a^{2}-\frac{153}{152}$, $\frac{6437}{874608}a^{11}-\frac{29}{41648}a^{10}-\frac{15471}{291536}a^{9}-\frac{65}{124944}a^{8}+\frac{181339}{437304}a^{7}-\frac{1241}{62472}a^{6}-\frac{197089}{145768}a^{5}+\frac{2075}{20824}a^{4}+\frac{9153}{2192}a^{3}-\frac{1341}{2192}a^{2}-\frac{1110261}{291536}a+\frac{66359}{41648}$, $\frac{2059}{874608}a^{11}-\frac{21}{41648}a^{10}-\frac{1801}{291536}a^{9}+\frac{671}{124944}a^{8}+\frac{22429}{437304}a^{7}-\frac{4489}{62472}a^{6}-\frac{519}{145768}a^{5}+\frac{5811}{20824}a^{4}+\frac{463}{2192}a^{3}-\frac{1349}{2192}a^{2}+\frac{102365}{291536}a-\frac{35961}{41648}$, $\frac{93}{72884}a^{11}+\frac{433}{62472}a^{10}-\frac{464}{54663}a^{9}-\frac{1069}{20824}a^{8}+\frac{429}{36442}a^{7}+\frac{2737}{10412}a^{6}-\frac{3013}{18221}a^{5}-\frac{8951}{10412}a^{4}-\frac{209}{548}a^{3}+\frac{1043}{1096}a^{2}-\frac{22751}{18221}a+\frac{37681}{20824}$, $\frac{163}{291536}a^{11}-\frac{623}{124944}a^{10}-\frac{13637}{874608}a^{9}+\frac{851}{124944}a^{8}+\frac{45751}{437304}a^{7}-\frac{5057}{62472}a^{6}-\frac{64441}{145768}a^{5}-\frac{1537}{20824}a^{4}+\frac{1973}{2192}a^{3}-\frac{1893}{2192}a^{2}-\frac{129917}{291536}a+\frac{36571}{41648}$, $\frac{1}{16}a^{11}-\frac{1}{16}a^{10}-\frac{5}{16}a^{9}+\frac{5}{16}a^{8}+\frac{23}{8}a^{7}-\frac{23}{8}a^{6}-\frac{43}{8}a^{5}+\frac{43}{8}a^{4}+\frac{355}{16}a^{3}-\frac{355}{16}a^{2}+\frac{409}{16}a-\frac{425}{16}$
|
| |
| Regulator: | \( 20420.2934177 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{5}\cdot 20420.2934177 \cdot 1}{2\cdot\sqrt{328683126924509184}}\cr\approx \mathstrut & 0.697593797657 \end{aligned}\]
Galois group
$(C_2^2\times A_4^2):C_4$ (as 12T241):
| A solvable group of order 2304 |
| The 40 conjugacy class representatives for $(C_2^2\times A_4^2):C_4$ |
| Character table for $(C_2^2\times A_4^2):C_4$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 6.2.11943936.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{4}$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.4.0.1}{4} }$ | ${\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{3}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.3.0.1}{3} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.4.0.1}{4} }$ | ${\href{/padicField/41.6.0.1}{6} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.4.0.1}{4} }$ | ${\href{/padicField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.2.6a1.5 | $x^{4} + 2 x^{3} + 7 x^{2} + 6 x + 7$ | $2$ | $2$ | $6$ | $C_2^2$ | $$[3]^{2}$$ |
| 2.1.8.30a1.72 | $x^{8} + 8 x^{7} + 16 x^{6} + 16 x^{5} + 4 x^{4} + 18$ | $8$ | $1$ | $30$ | $((C_8 : C_2):C_2):C_2$ | $$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$$ | |
|
\(3\)
| 3.2.6.14a1.2 | $x^{12} + 12 x^{11} + 72 x^{10} + 280 x^{9} + 780 x^{8} + 1632 x^{7} + 2630 x^{6} + 3303 x^{5} + 3240 x^{4} + 2462 x^{3} + 1410 x^{2} + 567 x + 124$ | $6$ | $2$ | $14$ | $(C_3\times C_3):C_4$ | $$[\frac{3}{2}, \frac{3}{2}]_{2}^{2}$$ |