Normalized defining polynomial
\( x^{12} - 3 x^{11} - 11 x^{10} + 35 x^{9} + 37 x^{8} - 140 x^{7} - 19 x^{6} + 217 x^{5} - 79 x^{4} + \cdots - 1 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[12, 0]$ |
| |
| Discriminant: |
\(2755304652953125\)
\(\medspace = 5^{6}\cdot 7^{8}\cdot 13^{2}\cdot 181\)
|
| |
| Root discriminant: | \(19.35\) |
| |
| Galois root discriminant: | $5^{1/2}7^{2/3}13^{1/2}181^{1/2}\approx 396.91239279873855$ | ||
| Ramified primes: |
\(5\), \(7\), \(13\), \(181\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{181}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{41}a^{11}+\frac{7}{41}a^{10}+\frac{18}{41}a^{9}+\frac{10}{41}a^{8}+\frac{14}{41}a^{7}-\frac{19}{41}a^{5}-\frac{14}{41}a^{4}-\frac{14}{41}a^{3}+\frac{18}{41}a^{2}-\frac{8}{41}a-\frac{4}{41}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$2a^{11}-5a^{10}-24a^{9}+56a^{8}+99a^{7}-213a^{6}-145a^{5}+318a^{4}+23a^{3}-139a^{2}+30a+3$, $\frac{58}{41}a^{11}-\frac{127}{41}a^{10}-\frac{760}{41}a^{9}+\frac{1482}{41}a^{8}+\frac{3477}{41}a^{7}-144a^{6}-\frac{5981}{41}a^{5}+\frac{9274}{41}a^{4}+\frac{2345}{41}a^{3}-\frac{4163}{41}a^{2}+\frac{479}{41}a+\frac{55}{41}$, $\frac{27}{41}a^{11}-\frac{57}{41}a^{10}-\frac{375}{41}a^{9}+\frac{721}{41}a^{8}+\frac{1772}{41}a^{7}-76a^{6}-\frac{2973}{41}a^{5}+\frac{5239}{41}a^{4}+\frac{688}{41}a^{3}-\frac{2343}{41}a^{2}+\frac{563}{41}a+\frac{15}{41}$, $\frac{55}{41}a^{11}+\frac{148}{41}a^{10}+\frac{609}{41}a^{9}-\frac{1575}{41}a^{8}-\frac{2287}{41}a^{7}+137a^{6}+\frac{2972}{41}a^{5}-\frac{7799}{41}a^{4}-\frac{255}{41}a^{3}+\frac{3356}{41}a^{2}-\frac{667}{41}a-\frac{108}{41}$, $\frac{51}{41}a^{11}+\frac{135}{41}a^{10}+\frac{599}{41}a^{9}-\frac{1535}{41}a^{8}-\frac{2354}{41}a^{7}+145a^{6}+\frac{2937}{41}a^{5}-\frac{9003}{41}a^{4}+\frac{714}{41}a^{3}+\frac{3879}{41}a^{2}-\frac{1314}{41}a-\frac{42}{41}$, $\frac{76}{41}a^{11}+\frac{206}{41}a^{10}+\frac{887}{41}a^{9}-\frac{2359}{41}a^{8}-\frac{3483}{41}a^{7}+226a^{6}+\frac{4478}{41}a^{5}-\frac{14393}{41}a^{4}+\frac{654}{41}a^{3}+\frac{6668}{41}a^{2}-\frac{1770}{41}a-\frac{188}{41}$, $\frac{140}{41}a^{11}+\frac{332}{41}a^{10}+\frac{1744}{41}a^{9}-\frac{3778}{41}a^{8}-\frac{7536}{41}a^{7}+357a^{6}+\frac{11926}{41}a^{5}-\frac{22312}{41}a^{4}-\frac{3288}{41}a^{3}+\frac{9862}{41}a^{2}-\frac{1668}{41}a-\frac{178}{41}$, $\frac{113}{41}a^{11}+\frac{275}{41}a^{10}+\frac{1369}{41}a^{9}-\frac{3057}{41}a^{8}-\frac{5764}{41}a^{7}+281a^{6}+\frac{8953}{41}a^{5}-\frac{17073}{41}a^{4}-\frac{2600}{41}a^{3}+\frac{7519}{41}a^{2}-\frac{1105}{41}a-\frac{163}{41}$, $\frac{70}{41}a^{11}+\frac{166}{41}a^{10}+\frac{872}{41}a^{9}-\frac{1889}{41}a^{8}-\frac{3768}{41}a^{7}+178a^{6}+\frac{5963}{41}a^{5}-\frac{10992}{41}a^{4}-\frac{1603}{41}a^{3}+\frac{4685}{41}a^{2}-\frac{875}{41}a-\frac{89}{41}$, $\frac{23}{41}a^{11}+\frac{44}{41}a^{10}+\frac{324}{41}a^{9}-\frac{558}{41}a^{8}-\frac{1552}{41}a^{7}+59a^{6}+\frac{2692}{41}a^{5}-\frac{4106}{41}a^{4}-\frac{908}{41}a^{3}+\frac{1882}{41}a^{2}-\frac{267}{41}a-\frac{31}{41}$, $\frac{3}{41}a^{11}-\frac{21}{41}a^{10}+\frac{110}{41}a^{9}+\frac{216}{41}a^{8}-\frac{862}{41}a^{7}-19a^{6}+\frac{2394}{41}a^{5}+\frac{1108}{41}a^{4}-\frac{2377}{41}a^{3}-\frac{587}{41}a^{2}+\frac{680}{41}a+\frac{53}{41}$
|
| |
| Regulator: | \( 4164.646983587647 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 4164.646983587647 \cdot 1}{2\cdot\sqrt{2755304652953125}}\cr\approx \mathstrut & 0.162488763500577 \end{aligned}\]
Galois group
$C_2\wr C_6$ (as 12T134):
| A solvable group of order 384 |
| The 28 conjugacy class representatives for $C_2\wr C_6$ |
| Character table for $C_2\wr C_6$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 6.6.300125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.12.0.1}{12} }$ | ${\href{/padicField/3.6.0.1}{6} }^{2}$ | R | R | ${\href{/padicField/11.3.0.1}{3} }^{4}$ | R | ${\href{/padicField/17.12.0.1}{12} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.2.0.1}{2} }^{4}{,}\,{\href{/padicField/29.1.0.1}{1} }^{4}$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.3.0.1}{3} }^{2}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{6}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ | ${\href{/padicField/47.12.0.1}{12} }$ | ${\href{/padicField/53.12.0.1}{12} }$ | ${\href{/padicField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(5\)
| 5.6.2.6a1.2 | $x^{12} + 2 x^{10} + 8 x^{9} + 3 x^{8} + 8 x^{7} + 22 x^{6} + 8 x^{5} + 5 x^{4} + 16 x^{3} + 4 x^{2} + 9$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $$[\ ]_{2}^{6}$$ |
|
\(7\)
| 7.4.3.8a1.3 | $x^{12} + 15 x^{10} + 12 x^{9} + 84 x^{8} + 120 x^{7} + 263 x^{6} + 372 x^{5} + 492 x^{4} + 424 x^{3} + 279 x^{2} + 108 x + 34$ | $3$ | $4$ | $8$ | $C_{12}$ | $$[\ ]_{3}^{4}$$ |
|
\(13\)
| 13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 13.4.1.0a1.1 | $x^{4} + 3 x^{2} + 12 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 13.2.2.2a1.1 | $x^{4} + 24 x^{3} + 148 x^{2} + 61 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
|
\(181\)
| $\Q_{181}$ | $x + 179$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{181}$ | $x + 179$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{181}$ | $x + 179$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{181}$ | $x + 179$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 181.1.2.1a1.2 | $x^{2} + 362$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 181.2.1.0a1.1 | $x^{2} + 177 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 181.2.1.0a1.1 | $x^{2} + 177 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 181.2.1.0a1.1 | $x^{2} + 177 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |