Normalized defining polynomial
\( x^{11} - 4 x^{10} + 6 x^{9} - 8 x^{8} - 31 x^{7} + 168 x^{6} + 106 x^{5} - 748 x^{4} - 396 x^{3} + \cdots + 168 \)
Invariants
| Degree: | $11$ |
| |
| Signature: | $[5, 3]$ |
| |
| Discriminant: |
\(-9678619238400000000\)
\(\medspace = -\,2^{19}\cdot 3^{9}\cdot 5^{8}\cdot 7^{4}\)
|
| |
| Root discriminant: | \(53.21\) |
| |
| Galois root discriminant: | $2^{115/48}3^{5/4}5^{11/12}7^{2/3}\approx 332.46081383675426$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\), \(7\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-6}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{6}$, $\frac{1}{6}a^{8}-\frac{1}{6}a^{7}+\frac{1}{3}a^{5}-\frac{1}{3}a^{4}$, $\frac{1}{24}a^{9}-\frac{1}{12}a^{8}+\frac{1}{24}a^{7}-\frac{1}{6}a^{6}+\frac{1}{3}a^{5}-\frac{1}{6}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{4}a$, $\frac{1}{182960160}a^{10}-\frac{2833111}{182960160}a^{9}+\frac{13893323}{182960160}a^{8}+\frac{5281277}{60986720}a^{7}-\frac{9078017}{45740040}a^{6}+\frac{17000761}{45740040}a^{5}+\frac{7439119}{91480080}a^{4}-\frac{9805169}{30493360}a^{3}+\frac{7890337}{30493360}a^{2}-\frac{5158011}{30493360}a-\frac{3467259}{7623340}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{8963491}{182960160}a^{10}-\frac{10056487}{60986720}a^{9}+\frac{16646411}{60986720}a^{8}-\frac{79086779}{182960160}a^{7}-\frac{23067149}{15246680}a^{6}+\frac{104280257}{15246680}a^{5}+\frac{584905709}{91480080}a^{4}-\frac{703866419}{30493360}a^{3}-\frac{480683453}{30493360}a^{2}+\frac{369229039}{30493360}a+\frac{34307451}{7623340}$, $\frac{731981}{36592032}a^{10}-\frac{7767359}{36592032}a^{9}+\frac{18373447}{36592032}a^{8}-\frac{8917603}{12197344}a^{7}+\frac{3237371}{9148008}a^{6}+\frac{70683029}{9148008}a^{5}-\frac{250105429}{18296016}a^{4}-\frac{245132825}{6098672}a^{3}+\frac{247209029}{6098672}a^{2}+\frac{516674421}{6098672}a+\frac{31234753}{1524668}$, $\frac{3116037}{30493360}a^{10}-\frac{28726021}{91480080}a^{9}+\frac{58671773}{91480080}a^{8}-\frac{116973379}{91480080}a^{7}-\frac{52029887}{22870020}a^{6}+\frac{256144951}{22870020}a^{5}+\frac{626886689}{45740040}a^{4}-\frac{373865579}{15246680}a^{3}-\frac{398453713}{15246680}a^{2}-\frac{437904241}{15246680}a-\frac{26287959}{3811670}$, $\frac{12287}{1143501}a^{10}-\frac{66829}{3049336}a^{9}-\frac{4835}{4574004}a^{8}-\frac{1019803}{9148008}a^{7}-\frac{457505}{762334}a^{6}+\frac{651431}{1143501}a^{5}+\frac{2717239}{762334}a^{4}+\frac{1217335}{1524668}a^{3}-\frac{3879423}{762334}a^{2}-\frac{5994709}{1524668}a-\frac{266950}{381167}$, $\frac{28686697}{60986720}a^{10}-\frac{123344327}{60986720}a^{9}+\frac{148152931}{60986720}a^{8}+\frac{156926487}{60986720}a^{7}-\frac{614725989}{15246680}a^{6}+\frac{2382925057}{15246680}a^{5}-\frac{2959992457}{30493360}a^{4}-\frac{11095501299}{30493360}a^{3}+\frac{6794978427}{30493360}a^{2}+\frac{10402929599}{30493360}a+\frac{522763091}{7623340}$, $\frac{10590127}{36592032}a^{10}-\frac{30362609}{36592032}a^{9}+\frac{31761989}{36592032}a^{8}-\frac{21522143}{36592032}a^{7}-\frac{115070107}{9148008}a^{6}+\frac{367532479}{9148008}a^{5}+\frac{1162017713}{18296016}a^{4}-\frac{1004460263}{6098672}a^{3}-\frac{880992849}{6098672}a^{2}+\frac{895696467}{6098672}a+\frac{163602367}{1524668}$, $\frac{26388401}{60986720}a^{10}-\frac{134306351}{60986720}a^{9}+\frac{301399323}{60986720}a^{8}-\frac{529028609}{60986720}a^{7}-\frac{64258837}{15246680}a^{6}+\frac{1186243521}{15246680}a^{5}-\frac{1136307041}{30493360}a^{4}-\frac{8844651467}{30493360}a^{3}+\frac{4111787971}{30493360}a^{2}+\frac{9386922247}{30493360}a+\frac{548395483}{7623340}$
|
| |
| Regulator: | \( 8123279.63873 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{5}\cdot(2\pi)^{3}\cdot 8123279.63873 \cdot 1}{2\cdot\sqrt{9678619238400000000}}\cr\approx \mathstrut & 10.3629711503 \end{aligned}\] (assuming GRH)
Galois group
| A non-solvable group of order 39916800 |
| The 56 conjugacy class representatives for $S_{11}$ |
| Character table for $S_{11}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 22 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/padicField/11.5.0.1}{5} }{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.3.0.1}{3} }$ | ${\href{/padicField/17.9.0.1}{9} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.5.0.1}{5} }$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.7.0.1}{7} }{,}\,{\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.11.0.1}{11} }$ | ${\href{/padicField/37.7.0.1}{7} }{,}\,{\href{/padicField/37.4.0.1}{4} }$ | ${\href{/padicField/41.9.0.1}{9} }{,}\,{\href{/padicField/41.2.0.1}{2} }$ | ${\href{/padicField/43.7.0.1}{7} }{,}\,{\href{/padicField/43.4.0.1}{4} }$ | ${\href{/padicField/47.10.0.1}{10} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.11.0.1}{11} }$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 2.1.4.8b1.4 | $x^{4} + 2 x^{2} + 4 x + 6$ | $4$ | $1$ | $8$ | $D_{4}$ | $$[2, 3]^{2}$$ | |
| 2.1.6.11a1.7 | $x^{6} + 4 x^{5} + 4 x^{3} + 2$ | $6$ | $1$ | $11$ | $S_4\times C_2$ | $$[\frac{4}{3}, \frac{4}{3}, 3]_{3}^{2}$$ | |
|
\(3\)
| 3.1.3.3a1.2 | $x^{3} + 6 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $$[\frac{3}{2}]_{2}$$ |
| 3.1.4.3a1.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ | |
| 3.1.4.3a1.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ | |
|
\(5\)
| $\Q_{5}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 5.1.4.3a1.4 | $x^{4} + 20$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
| 5.1.6.5a1.1 | $x^{6} + 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $$[\ ]_{6}^{2}$$ | |
|
\(7\)
| 7.1.3.2a1.1 | $x^{3} + 7$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ |
| 7.1.3.2a1.1 | $x^{3} + 7$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ | |
| 7.5.1.0a1.1 | $x^{5} + x + 4$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ |