Normalized defining polynomial
\( x^{11} - x^{10} + 10x^{9} - 405x^{3} + 405x^{2} + 324x - 324 \)
Invariants
| Degree: | $11$ |
| |
| Signature: | $[5, 3]$ |
| |
| Discriminant: |
\(-84728860944300000000\)
\(\medspace = -\,2^{8}\cdot 3^{25}\cdot 5^{8}\)
|
| |
| Root discriminant: | \(64.81\) |
| |
| Galois root discriminant: | $2^{8/9}3^{475/162}5^{11/12}\approx 202.89500913181897$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}$, $\frac{1}{3}a^{6}+\frac{1}{3}a^{3}$, $\frac{1}{9}a^{7}-\frac{1}{9}a^{6}+\frac{1}{9}a^{5}$, $\frac{1}{9}a^{8}+\frac{1}{9}a^{5}$, $\frac{1}{27}a^{9}-\frac{1}{27}a^{8}+\frac{1}{27}a^{7}-\frac{1}{3}a^{4}$, $\frac{1}{243540}a^{10}+\frac{1073}{243540}a^{9}-\frac{2792}{60885}a^{8}-\frac{571}{20295}a^{7}-\frac{2149}{20295}a^{6}+\frac{1094}{20295}a^{5}-\frac{991}{2255}a^{4}-\frac{2177}{6765}a^{3}+\frac{3441}{9020}a^{2}-\frac{2551}{9020}a+\frac{1159}{4510}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{4579}{12177}a^{10}+\frac{325}{4059}a^{9}+\frac{5180}{1353}a^{8}+\frac{56686}{12177}a^{7}+\frac{23393}{4059}a^{6}+\frac{28187}{4059}a^{5}+\frac{3849}{451}a^{4}+\frac{14312}{1353}a^{3}-\frac{62035}{451}a^{2}-\frac{7796}{451}a+\frac{44035}{451}$, $\frac{97003}{243540}a^{10}-\frac{6581}{243540}a^{9}+\frac{238919}{60885}a^{8}+\frac{214526}{60885}a^{7}+\frac{18631}{6765}a^{6}+\frac{7844}{6765}a^{5}-\frac{9244}{6765}a^{4}-\frac{8311}{6765}a^{3}-\frac{1395877}{9020}a^{2}+\frac{252587}{9020}a+\frac{700247}{4510}$, $\frac{1339}{13530}a^{10}-\frac{21997}{121770}a^{9}+\frac{82106}{60885}a^{8}-\frac{49541}{60885}a^{7}+\frac{10489}{6765}a^{6}+\frac{117133}{20295}a^{5}-\frac{77036}{6765}a^{4}+\frac{31332}{2255}a^{3}-\frac{78629}{4510}a^{2}-\frac{69591}{4510}a+\frac{42484}{2255}$, $\frac{134089}{243540}a^{10}-\frac{18563}{243540}a^{9}+\frac{327842}{60885}a^{8}+\frac{283973}{60885}a^{7}+\frac{7786}{2255}a^{6}+\frac{17657}{6765}a^{5}+\frac{12598}{6765}a^{4}+\frac{4762}{6765}a^{3}-\frac{2020291}{9020}a^{2}+\frac{284041}{9020}a+\frac{1004791}{4510}$, $\frac{8611}{27060}a^{10}+\frac{64187}{243540}a^{9}+\frac{215542}{60885}a^{8}+\frac{374903}{60885}a^{7}+\frac{202879}{20295}a^{6}+\frac{89587}{6765}a^{5}+\frac{44381}{2255}a^{4}+\frac{157117}{6765}a^{3}-\frac{841101}{9020}a^{2}-\frac{630989}{9020}a+\frac{94891}{4510}$, $\frac{2121}{9020}a^{10}-\frac{641}{27060}a^{9}+\frac{47792}{20295}a^{8}+\frac{14381}{6765}a^{7}+\frac{4743}{2255}a^{6}+\frac{42278}{20295}a^{5}+\frac{11239}{6765}a^{4}+\frac{642}{2255}a^{3}-\frac{861093}{9020}a^{2}+\frac{117063}{9020}a+\frac{395663}{4510}$, $\frac{589}{243540}a^{10}-\frac{8423}{243540}a^{9}-\frac{2848}{60885}a^{8}-\frac{12247}{60885}a^{7}-\frac{14236}{20295}a^{6}+\frac{8456}{20295}a^{5}+\frac{16823}{6765}a^{4}+\frac{23392}{6765}a^{3}-\frac{56871}{9020}a^{2}-\frac{32279}{9020}a+\frac{19681}{4510}$
|
| |
| Regulator: | \( 5378394.89404 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{5}\cdot(2\pi)^{3}\cdot 5378394.89404 \cdot 1}{2\cdot\sqrt{84728860944300000000}}\cr\approx \mathstrut & 2.31897779257 \end{aligned}\] (assuming GRH)
Galois group
| A non-solvable group of order 39916800 |
| The 56 conjugacy class representatives for $S_{11}$ |
| Character table for $S_{11}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 22 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.2.0.1}{2} }$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.9.0.1}{9} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.7.0.1}{7} }{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.7.0.1}{7} }{,}\,{\href{/padicField/23.4.0.1}{4} }$ | ${\href{/padicField/29.9.0.1}{9} }{,}\,{\href{/padicField/29.2.0.1}{2} }$ | ${\href{/padicField/31.7.0.1}{7} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.5.0.1}{5} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.7.0.1}{7} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.2.0.1}{2} }$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.3.0.1}{3} }$ | ${\href{/padicField/53.7.0.1}{7} }{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.9.0.1}{9} }{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.1.0a1.1 | $x^{2} + x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 2.1.9.8a1.1 | $x^{9} + 2$ | $9$ | $1$ | $8$ | $(C_9:C_3):C_2$ | $$[\ ]_{9}^{6}$$ | |
|
\(3\)
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 3.1.9.24a1.27 | $x^{9} + 18 x^{8} + 9 x^{7} + 18 x^{3} + 54 x + 3$ | $9$ | $1$ | $24$ | $(C_3^3:C_3):C_2$ | $$[\frac{3}{2}, \frac{5}{2}, \frac{8}{3}, \frac{19}{6}]_{2}$$ | |
|
\(5\)
| $\Q_{5}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 5.1.4.3a1.3 | $x^{4} + 15$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
| 5.1.6.5a1.1 | $x^{6} + 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $$[\ ]_{6}^{2}$$ |