Normalized defining polynomial
\( x^{10} - 2x^{9} - 4x^{8} + 8x^{7} + 3x^{6} - 5x^{5} - 5x^{3} + x^{2} + 3x - 1 \)
Invariants
| Degree: | $10$ |
| |
| Signature: | $[8, 1]$ |
| |
| Discriminant: |
\(-94747154563\)
\(\medspace = -\,221047\cdot 428629\)
|
| |
| Root discriminant: | \(12.52\) |
| |
| Galois root discriminant: | $221047^{1/2}428629^{1/2}\approx 307810.2574038104$ | ||
| Ramified primes: |
\(221047\), \(428629\)
|
| |
| Discriminant root field: | $\Q(\sqrt{-94747154563}$) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $8$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a$, $a^{9}-2a^{8}-4a^{7}+7a^{6}+4a^{5}-a^{4}-2a^{3}-7a^{2}-a+1$, $2a^{9}-3a^{8}-9a^{7}+11a^{6}+9a^{5}-4a^{4}+a^{3}-9a^{2}-3a+3$, $a^{9}-2a^{8}-4a^{7}+8a^{6}+3a^{5}-5a^{4}-5a^{2}+3$, $a^{9}-2a^{8}-4a^{7}+7a^{6}+4a^{5}-a^{4}-2a^{3}-7a^{2}-2a+1$, $a-1$, $2a^{9}-2a^{8}-10a^{7}+7a^{6}+12a^{5}-2a^{4}+a^{3}-8a^{2}-5a+4$, $a^{8}-5a^{6}-a^{5}+4a^{4}+2a^{3}+5a^{2}-2$
|
| |
| Regulator: | \( 63.50121089079369 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{1}\cdot 63.50121089079369 \cdot 1}{2\cdot\sqrt{94747154563}}\cr\approx \mathstrut & 0.165916186366448 \end{aligned}\]
Galois group
| A non-solvable group of order 3628800 |
| The 42 conjugacy class representatives for $S_{10}$ |
| Character table for $S_{10}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 45 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.10.0.1}{10} }$ | ${\href{/padicField/3.10.0.1}{10} }$ | ${\href{/padicField/5.10.0.1}{10} }$ | ${\href{/padicField/7.7.0.1}{7} }{,}\,{\href{/padicField/7.3.0.1}{3} }$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.7.0.1}{7} }{,}\,{\href{/padicField/13.3.0.1}{3} }$ | ${\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.9.0.1}{9} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.9.0.1}{9} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.3.0.1}{3} }^{3}{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.5.0.1}{5} }{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.7.0.1}{7} }{,}\,{\href{/padicField/37.3.0.1}{3} }$ | ${\href{/padicField/41.10.0.1}{10} }$ | ${\href{/padicField/43.7.0.1}{7} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{3}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.7.0.1}{7} }{,}\,{\href{/padicField/59.3.0.1}{3} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(221047\)
| $\Q_{221047}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{221047}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | ||
|
\(428629\)
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ |