Normalized defining polynomial
\( x^{10} - 3x^{9} - 2x^{8} + 11x^{7} - 3x^{6} - 8x^{5} + 8x^{4} - 7x^{3} - 5x^{2} + 6x + 1 \)
Invariants
| Degree: | $10$ |
| |
| Signature: | $[8, 1]$ |
| |
| Discriminant: |
\(-88849549891\)
\(\medspace = -\,6133\cdot 14487127\)
|
| |
| Root discriminant: | \(12.44\) |
| |
| Galois root discriminant: | $6133^{1/2}14487127^{1/2}\approx 298076.4161939015$ | ||
| Ramified primes: |
\(6133\), \(14487127\)
|
| |
| Discriminant root field: | $\Q(\sqrt{-88849549891}$) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $8$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a^{9}-a^{8}-5a^{7}+4a^{6}+6a^{5}-5a^{4}+4a^{3}+2a^{2}-7a$, $a^{9}-2a^{8}-2a^{7}+5a^{6}-2a^{5}-a^{4}+5a^{3}-3a^{2}-a+1$, $a^{8}-2a^{7}-2a^{6}+5a^{5}-2a^{4}-a^{3}+4a^{2}-2a$, $a^{3}-a^{2}-2a+1$, $a^{9}-a^{8}-4a^{7}+3a^{6}+2a^{5}-2a^{4}+6a^{3}+a^{2}-3a$, $a^{7}-2a^{6}-2a^{5}+4a^{4}-a^{3}+a^{2}+3a-1$, $a^{9}-a^{8}-4a^{7}+2a^{6}+4a^{5}+2a^{3}+a^{2}-3a-2$, $a^{9}-a^{8}-4a^{7}+2a^{6}+4a^{5}+2a^{3}+a^{2}-3a-1$
|
| |
| Regulator: | \( 60.6948622455324 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{1}\cdot 60.6948622455324 \cdot 1}{2\cdot\sqrt{88849549891}}\cr\approx \mathstrut & 0.163762384017647 \end{aligned}\]
Galois group
| A non-solvable group of order 3628800 |
| The 42 conjugacy class representatives for $S_{10}$ |
| Character table for $S_{10}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 45 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.10.0.1}{10} }$ | ${\href{/padicField/3.10.0.1}{10} }$ | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.2.0.1}{2} }$ | ${\href{/padicField/7.10.0.1}{10} }$ | ${\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}$ | ${\href{/padicField/13.10.0.1}{10} }$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.4.0.1}{4} }$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.4.0.1}{4} }$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.4.0.1}{4} }$ | ${\href{/padicField/31.7.0.1}{7} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.7.0.1}{7} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.2.0.1}{2} }^{4}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.9.0.1}{9} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.10.0.1}{10} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(6133\)
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | ||
|
\(14487127\)
| $\Q_{14487127}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{14487127}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{14487127}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ |