Normalized defining polynomial
\( x^{10} - 3x^{9} - 2x^{8} + 13x^{7} - 7x^{6} - 14x^{5} + 16x^{4} + 4x^{3} - 8x^{2} + 1 \)
Invariants
| Degree: | $10$ |
| |
| Signature: | $[8, 1]$ |
| |
| Discriminant: |
\(-76575120067\)
|
| |
| Root discriminant: | \(12.26\) |
| |
| Galois root discriminant: | $76575120067^{1/2}\approx 276722.09898560686$ | ||
| Ramified primes: |
\(76575120067\)
|
| |
| Discriminant root field: | $\Q(\sqrt{-76575120067}$) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $8$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a$, $a^{8}-3a^{7}-2a^{6}+12a^{5}-6a^{4}-10a^{3}+12a^{2}+a-3$, $a^{9}-2a^{8}-4a^{7}+9a^{6}+3a^{5}-13a^{4}+a^{3}+11a^{2}-3$, $a-1$, $3a^{9}-8a^{8}-8a^{7}+34a^{6}-10a^{5}-37a^{4}+28a^{3}+17a^{2}-8a-3$, $2a^{9}-6a^{8}-4a^{7}+25a^{6}-13a^{5}-24a^{4}+27a^{3}+6a^{2}-8a-1$, $3a^{9}-7a^{8}-10a^{7}+31a^{6}-2a^{5}-38a^{4}+20a^{3}+21a^{2}-5a-4$, $3a^{9}-7a^{8}-10a^{7}+31a^{6}-2a^{5}-38a^{4}+20a^{3}+21a^{2}-6a-4$
|
| |
| Regulator: | \( 55.66483610214309 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{1}\cdot 55.66483610214309 \cdot 1}{2\cdot\sqrt{76575120067}}\cr\approx \mathstrut & 0.161780781677803 \end{aligned}\]
Galois group
| A non-solvable group of order 3628800 |
| The 42 conjugacy class representatives for $S_{10}$ |
| Character table for $S_{10}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 45 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.10.0.1}{10} }$ | ${\href{/padicField/3.10.0.1}{10} }$ | ${\href{/padicField/5.10.0.1}{10} }$ | ${\href{/padicField/7.7.0.1}{7} }{,}\,{\href{/padicField/7.3.0.1}{3} }$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.7.0.1}{7} }{,}\,{\href{/padicField/17.3.0.1}{3} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.7.0.1}{7} }{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }$ | ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.3.0.1}{3} }^{2}$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.7.0.1}{7} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.7.0.1}{7} }{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.7.0.1}{7} }{,}\,{\href{/padicField/53.3.0.1}{3} }$ | ${\href{/padicField/59.7.0.1}{7} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(76575120067\)
| $\Q_{76575120067}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{76575120067}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |