Properties

Label 10.4.9356737536.1
Degree $10$
Signature $[4, 3]$
Discriminant $-9356737536$
Root discriminant \(9.93\)
Ramified primes $2,3,103,9857$
Class number $1$
Class group trivial
Galois group $S_{10}$ (as 10T45)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^10 - 2*x^8 - 2*x^7 + 5*x^6 - 8*x^4 + 2*x^3 + 6*x^2 - 1)
 
Copy content gp:K = bnfinit(y^10 - 2*y^8 - 2*y^7 + 5*y^6 - 8*y^4 + 2*y^3 + 6*y^2 - 1, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^10 - 2*x^8 - 2*x^7 + 5*x^6 - 8*x^4 + 2*x^3 + 6*x^2 - 1);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^10 - 2*x^8 - 2*x^7 + 5*x^6 - 8*x^4 + 2*x^3 + 6*x^2 - 1)
 

\( x^{10} - 2x^{8} - 2x^{7} + 5x^{6} - 8x^{4} + 2x^{3} + 6x^{2} - 1 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $10$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[4, 3]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(-9356737536\) \(\medspace = -\,2^{10}\cdot 3^{2}\cdot 103\cdot 9857\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(9.93\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{15/8}3^{1/2}103^{1/2}9857^{1/2}\approx 6401.516361904466$
Ramified primes:   \(2\), \(3\), \(103\), \(9857\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-1015271}) \)
$\Aut(K/\Q)$:   $C_1$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order $1$
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  Trivial group, which has order $1$
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $6$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $9a^{9}-6a^{8}-13a^{7}-9a^{6}+50a^{5}-35a^{4}-45a^{3}+47a^{2}+17a-11$, $a$, $7a^{9}-5a^{8}-11a^{7}-7a^{6}+40a^{5}-27a^{4}-37a^{3}+39a^{2}+16a-9$, $a^{9}-a^{7}-2a^{6}+4a^{5}-2a^{4}-4a^{3}+2a+1$, $7a^{9}-5a^{8}-11a^{7}-6a^{6}+40a^{5}-28a^{4}-39a^{3}+43a^{2}+14a-12$, $a^{9}-a^{7}-2a^{6}+4a^{5}-2a^{4}-4a^{3}+2a$ Copy content Toggle raw display
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 9.762718169346838 \)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{3}\cdot 9.762718169346838 \cdot 1}{2\cdot\sqrt{9356737536}}\cr\approx \mathstrut & 0.200280248071241 \end{aligned}\]

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^10 - 2*x^8 - 2*x^7 + 5*x^6 - 8*x^4 + 2*x^3 + 6*x^2 - 1) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^10 - 2*x^8 - 2*x^7 + 5*x^6 - 8*x^4 + 2*x^3 + 6*x^2 - 1, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^10 - 2*x^8 - 2*x^7 + 5*x^6 - 8*x^4 + 2*x^3 + 6*x^2 - 1); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^10 - 2*x^8 - 2*x^7 + 5*x^6 - 8*x^4 + 2*x^3 + 6*x^2 - 1); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{10}$ (as 10T45):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 3628800
The 42 conjugacy class representatives for $S_{10}$
Character table for $S_{10}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 20 sibling: data not computed
Degree 45 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.4.0.1}{4} }$ ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.4.0.1}{4} }$ ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.5.0.1}{5} }^{2}$ ${\href{/padicField/17.10.0.1}{10} }$ ${\href{/padicField/19.10.0.1}{10} }$ ${\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.4.0.1}{4} }$ ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.2.0.1}{2} }$ ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.3.0.1}{3} }^{2}$ ${\href{/padicField/43.5.0.1}{5} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{3}$ ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }$ ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ ${\href{/padicField/59.5.0.1}{5} }{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.5.2.10a7.1$x^{10} + 2 x^{9} + 2 x^{8} + 4 x^{7} + 4 x^{6} + 6 x^{5} + 5 x^{4} + 4 x^{3} + 6 x^{2} + 2 x + 5$$2$$5$$10$$C_2^4 : C_5$$$[2, 2, 2, 2]^{5}$$
\(3\) Copy content Toggle raw display 3.2.2.2a1.1$x^{4} + 4 x^{3} + 8 x^{2} + 11 x + 4$$2$$2$$2$$C_4$$$[\ ]_{2}^{2}$$
3.6.1.0a1.1$x^{6} + 2 x^{4} + x^{2} + 2 x + 2$$1$$6$$0$$C_6$$$[\ ]^{6}$$
\(103\) Copy content Toggle raw display 103.2.1.0a1.1$x^{2} + 102 x + 5$$1$$2$$0$$C_2$$$[\ ]^{2}$$
103.1.2.1a1.2$x^{2} + 515$$2$$1$$1$$C_2$$$[\ ]_{2}$$
103.3.1.0a1.1$x^{3} + 2 x + 98$$1$$3$$0$$C_3$$$[\ ]^{3}$$
103.3.1.0a1.1$x^{3} + 2 x + 98$$1$$3$$0$$C_3$$$[\ ]^{3}$$
\(9857\) Copy content Toggle raw display $\Q_{9857}$$x$$1$$1$$0$Trivial$$[\ ]$$
Deg $2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
Deg $2$$2$$1$$1$$C_2$$$[\ ]_{2}$$
Deg $5$$1$$5$$0$$C_5$$$[\ ]^{5}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)