Normalized defining polynomial
\( x^{10} - 2x^{8} - 2x^{7} + 5x^{6} - 8x^{4} + 2x^{3} + 6x^{2} - 1 \)
Invariants
Degree: | $10$ |
| |
Signature: | $[4, 3]$ |
| |
Discriminant: |
\(-9356737536\)
\(\medspace = -\,2^{10}\cdot 3^{2}\cdot 103\cdot 9857\)
|
| |
Root discriminant: | \(9.93\) |
| |
Galois root discriminant: | $2^{15/8}3^{1/2}103^{1/2}9857^{1/2}\approx 6401.516361904466$ | ||
Ramified primes: |
\(2\), \(3\), \(103\), \(9857\)
|
| |
Discriminant root field: | \(\Q(\sqrt{-1015271}) \) | ||
$\Aut(K/\Q)$: | $C_1$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $6$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$9a^{9}-6a^{8}-13a^{7}-9a^{6}+50a^{5}-35a^{4}-45a^{3}+47a^{2}+17a-11$, $a$, $7a^{9}-5a^{8}-11a^{7}-7a^{6}+40a^{5}-27a^{4}-37a^{3}+39a^{2}+16a-9$, $a^{9}-a^{7}-2a^{6}+4a^{5}-2a^{4}-4a^{3}+2a+1$, $7a^{9}-5a^{8}-11a^{7}-6a^{6}+40a^{5}-28a^{4}-39a^{3}+43a^{2}+14a-12$, $a^{9}-a^{7}-2a^{6}+4a^{5}-2a^{4}-4a^{3}+2a$
|
| |
Regulator: | \( 9.762718169346838 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{3}\cdot 9.762718169346838 \cdot 1}{2\cdot\sqrt{9356737536}}\cr\approx \mathstrut & 0.200280248071241 \end{aligned}\]
Galois group
A non-solvable group of order 3628800 |
The 42 conjugacy class representatives for $S_{10}$ |
Character table for $S_{10}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 20 sibling: | data not computed |
Degree 45 sibling: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.4.0.1}{4} }$ | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.4.0.1}{4} }$ | ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.5.0.1}{5} }^{2}$ | ${\href{/padicField/17.10.0.1}{10} }$ | ${\href{/padicField/19.10.0.1}{10} }$ | ${\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.4.0.1}{4} }$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.3.0.1}{3} }^{2}$ | ${\href{/padicField/43.5.0.1}{5} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{3}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.5.0.1}{5} }{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.5.2.10a7.1 | $x^{10} + 2 x^{9} + 2 x^{8} + 4 x^{7} + 4 x^{6} + 6 x^{5} + 5 x^{4} + 4 x^{3} + 6 x^{2} + 2 x + 5$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $$[2, 2, 2, 2]^{5}$$ |
\(3\)
| 3.2.2.2a1.1 | $x^{4} + 4 x^{3} + 8 x^{2} + 11 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ |
3.6.1.0a1.1 | $x^{6} + 2 x^{4} + x^{2} + 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | |
\(103\)
| 103.2.1.0a1.1 | $x^{2} + 102 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
103.1.2.1a1.2 | $x^{2} + 515$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
103.3.1.0a1.1 | $x^{3} + 2 x + 98$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
103.3.1.0a1.1 | $x^{3} + 2 x + 98$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
\(9857\)
| $\Q_{9857}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ |