Normalized defining polynomial
\( x^{10} - 2x^{9} + 2x^{7} - 3x^{6} + 4x^{5} + x^{4} - 4x^{3} + x^{2} - 1 \)
Invariants
Degree: | $10$ |
| |
Signature: | $[4, 3]$ |
| |
Discriminant: |
\(-10087177216\)
\(\medspace = -\,2^{10}\cdot 19\cdot 499\cdot 1039\)
|
| |
Root discriminant: | \(10.01\) |
| |
Galois root discriminant: | $2^{15/8}19^{1/2}499^{1/2}1039^{1/2}\approx 11512.405782027154$ | ||
Ramified primes: |
\(2\), \(19\), \(499\), \(1039\)
|
| |
Discriminant root field: | $\Q(\sqrt{-9850759}$) | ||
$\Aut(K/\Q)$: | $C_1$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $6$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$a^{9}-2a^{8}+2a^{6}-3a^{5}+4a^{4}+a^{3}-4a^{2}+a$, $3a^{9}-7a^{8}+4a^{7}+2a^{6}-9a^{5}+16a^{4}-7a^{3}-4a^{2}+4a-3$, $2a^{9}-5a^{8}+3a^{7}+a^{6}-6a^{5}+12a^{4}-6a^{3}-2a^{2}+2a-3$, $a^{9}-2a^{8}+2a^{6}-3a^{5}+4a^{4}+a^{3}-4a^{2}$, $2a^{9}-4a^{8}+a^{7}+2a^{6}-5a^{5}+9a^{4}-a^{3}-4a^{2}+a-1$, $a^{9}-2a^{8}+a^{7}-2a^{5}+5a^{4}-2a^{3}-1$
|
| |
Regulator: | \( 9.827777272006605 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{3}\cdot 9.827777272006605 \cdot 1}{2\cdot\sqrt{10087177216}}\cr\approx \mathstrut & 0.194178021693719 \end{aligned}\]
Galois group
A non-solvable group of order 3628800 |
The 42 conjugacy class representatives for $S_{10}$ |
Character table for $S_{10}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 20 sibling: | data not computed |
Degree 45 sibling: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.10.0.1}{10} }$ | ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.4.0.1}{4} }$ | ${\href{/padicField/7.10.0.1}{10} }$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/23.5.0.1}{5} }^{2}$ | ${\href{/padicField/29.7.0.1}{7} }{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.7.0.1}{7} }{,}\,{\href{/padicField/43.3.0.1}{3} }$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.5.0.1}{5} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.10.0.1}{10} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.5.2.10a7.1 | $x^{10} + 2 x^{9} + 2 x^{8} + 4 x^{7} + 4 x^{6} + 6 x^{5} + 5 x^{4} + 4 x^{3} + 6 x^{2} + 2 x + 5$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $$[2, 2, 2, 2]^{5}$$ |
\(19\)
| 19.1.2.1a1.1 | $x^{2} + 19$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
19.8.1.0a1.1 | $x^{8} + x^{4} + 12 x^{3} + 10 x^{2} + 3 x + 2$ | $1$ | $8$ | $0$ | $C_8$ | $$[\ ]^{8}$$ | |
\(499\)
| $\Q_{499}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
Deg $7$ | $1$ | $7$ | $0$ | $C_7$ | $$[\ ]^{7}$$ | ||
\(1039\)
| $\Q_{1039}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
$\Q_{1039}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
$\Q_{1039}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ |