Normalized defining polynomial
\( x^{10} - 2x^{9} + 4x^{8} - 4x^{7} + x^{6} + 2x^{5} - 5x^{4} + 4x^{3} - x^{2} + 1 \)
Invariants
Degree: | $10$ |
| |
Signature: | $[2, 4]$ |
| |
Discriminant: |
\(929063936\)
\(\medspace = 2^{10}\cdot 41\cdot 22129\)
|
| |
Root discriminant: | \(7.89\) |
| |
Galois root discriminant: | $2^{15/8}41^{1/2}22129^{1/2}\approx 3493.848463111421$ | ||
Ramified primes: |
\(2\), \(41\), \(22129\)
|
| |
Discriminant root field: | \(\Q(\sqrt{907289}) \) | ||
$\Aut(K/\Q)$: | $C_1$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $5$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$a^{9}-3a^{8}+4a^{7}-4a^{6}-a^{5}+6a^{4}-5a^{3}+3a^{2}+a-2$, $a$, $a^{9}-a^{8}+2a^{7}-a^{6}-2a^{5}+a^{4}-2a^{3}+a^{2}+a+1$, $a^{9}-3a^{8}+5a^{7}-5a^{6}+a^{5}+5a^{4}-6a^{3}+4a^{2}-a-1$, $a^{8}-2a^{7}+3a^{6}-2a^{5}-2a^{4}+4a^{3}-4a^{2}+a+1$
|
| |
Regulator: | \( 1.8083304546491474 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{4}\cdot 1.8083304546491474 \cdot 1}{2\cdot\sqrt{929063936}}\cr\approx \mathstrut & 0.184928762922471 \end{aligned}\]
Galois group
A non-solvable group of order 3628800 |
The 42 conjugacy class representatives for $S_{10}$ |
Character table for $S_{10}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 20 sibling: | data not computed |
Degree 45 sibling: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.10.0.1}{10} }$ | ${\href{/padicField/5.7.0.1}{7} }{,}\,{\href{/padicField/5.3.0.1}{3} }$ | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.3.0.1}{3} }^{2}$ | ${\href{/padicField/17.7.0.1}{7} }{,}\,{\href{/padicField/17.3.0.1}{3} }$ | ${\href{/padicField/19.9.0.1}{9} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.9.0.1}{9} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.7.0.1}{7} }{,}\,{\href{/padicField/29.3.0.1}{3} }$ | ${\href{/padicField/31.7.0.1}{7} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.9.0.1}{9} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ | R | ${\href{/padicField/43.7.0.1}{7} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.10.0.1}{10} }$ | ${\href{/padicField/59.7.0.1}{7} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.5.2.10a7.1 | $x^{10} + 2 x^{9} + 2 x^{8} + 4 x^{7} + 4 x^{6} + 6 x^{5} + 5 x^{4} + 4 x^{3} + 6 x^{2} + 2 x + 5$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $$[2, 2, 2, 2]^{5}$$ |
\(41\)
| 41.1.2.1a1.1 | $x^{2} + 41$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
41.8.1.0a1.1 | $x^{8} + 5 x^{4} + 32 x^{3} + 20 x^{2} + 6 x + 6$ | $1$ | $8$ | $0$ | $C_8$ | $$[\ ]^{8}$$ | |
\(22129\)
| $\Q_{22129}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ |