Normalized defining polynomial
\( x^{10} - x^{8} - 2x^{7} - 3x^{6} + 2x^{5} + x^{4} + 2x^{2} + 1 \)
Invariants
Degree: | $10$ |
| |
Signature: | $[2, 4]$ |
| |
Discriminant: |
\(1720689664\)
\(\medspace = 2^{10}\cdot 1680361\)
|
| |
Root discriminant: | \(8.39\) |
| |
Galois root discriminant: | $2^{15/8}1680361^{1/2}\approx 4754.803114716145$ | ||
Ramified primes: |
\(2\), \(1680361\)
|
| |
Discriminant root field: | \(\Q(\sqrt{1680361}) \) | ||
$\Aut(K/\Q)$: | $C_1$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{41}a^{9}-\frac{11}{41}a^{8}-\frac{3}{41}a^{7}-\frac{10}{41}a^{6}-\frac{16}{41}a^{5}+\frac{14}{41}a^{4}+\frac{11}{41}a^{3}+\frac{2}{41}a^{2}-\frac{20}{41}a+\frac{15}{41}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $5$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$a$, $\frac{13}{41}a^{9}-\frac{20}{41}a^{8}+\frac{2}{41}a^{7}-\frac{7}{41}a^{6}-\frac{3}{41}a^{5}+\frac{59}{41}a^{4}-\frac{62}{41}a^{3}-\frac{15}{41}a^{2}+\frac{27}{41}a-\frac{51}{41}$, $\frac{7}{41}a^{9}+\frac{5}{41}a^{8}-\frac{21}{41}a^{7}+\frac{12}{41}a^{6}-\frac{30}{41}a^{5}+\frac{16}{41}a^{4}-\frac{5}{41}a^{3}-\frac{68}{41}a^{2}+\frac{65}{41}a-\frac{18}{41}$, $\frac{8}{41}a^{9}-\frac{6}{41}a^{8}-\frac{24}{41}a^{7}+\frac{2}{41}a^{6}-\frac{5}{41}a^{5}+\frac{71}{41}a^{4}+\frac{6}{41}a^{3}-\frac{66}{41}a^{2}+\frac{45}{41}a-\frac{3}{41}$, $\frac{10}{41}a^{9}+\frac{13}{41}a^{8}-\frac{30}{41}a^{7}-\frac{18}{41}a^{6}-\frac{37}{41}a^{5}+\frac{17}{41}a^{4}+\frac{69}{41}a^{3}-\frac{62}{41}a^{2}+\frac{5}{41}a+\frac{27}{41}$
|
| |
Regulator: | \( 2.664134262967264 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{4}\cdot 2.664134262967264 \cdot 1}{2\cdot\sqrt{1720689664}}\cr\approx \mathstrut & 0.200195495809808 \end{aligned}\]
Galois group
A non-solvable group of order 3628800 |
The 42 conjugacy class representatives for $S_{10}$ |
Character table for $S_{10}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 20 sibling: | data not computed |
Degree 45 sibling: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }{,}\,{\href{/padicField/3.4.0.1}{4} }$ | ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.4.0.1}{4} }$ | ${\href{/padicField/7.7.0.1}{7} }{,}\,{\href{/padicField/7.3.0.1}{3} }$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.5.0.1}{5} }{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.9.0.1}{9} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.5.0.1}{5} }{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.3.0.1}{3} }^{2}$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.4.0.1}{4} }$ | ${\href{/padicField/59.5.0.1}{5} }{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.5.2.10a7.1 | $x^{10} + 2 x^{9} + 2 x^{8} + 4 x^{7} + 4 x^{6} + 6 x^{5} + 5 x^{4} + 4 x^{3} + 6 x^{2} + 2 x + 5$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $$[2, 2, 2, 2]^{5}$$ |
\(1680361\)
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ |