Normalized defining polynomial
\( x^{10} - 2x^{9} - 8x^{8} + 15x^{7} + 17x^{6} - 28x^{5} - 15x^{4} + 17x^{3} + 6x^{2} - 3x - 1 \)
Invariants
| Degree: | $10$ |
| |
| Signature: | $[10, 0]$ |
| |
| Discriminant: |
\(983479472873\)
\(\medspace = 1567\cdot 627619319\)
|
| |
| Root discriminant: | \(15.82\) |
| |
| Galois root discriminant: | $1567^{1/2}627619319^{1/2}\approx 991705.3357086469$ | ||
| Ramified primes: |
\(1567\), \(627619319\)
|
| |
| Discriminant root field: | $\Q(\sqrt{983479472873}$) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
| Rank: | $9$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a$, $a^{9}-3a^{8}-6a^{7}+22a^{6}+3a^{5}-37a^{4}+7a^{3}+17a^{2}-4a-2$, $a^{9}-2a^{8}-8a^{7}+15a^{6}+17a^{5}-28a^{4}-15a^{3}+17a^{2}+5a-3$, $2a^{9}-7a^{8}-10a^{7}+53a^{6}-9a^{5}-99a^{4}+40a^{3}+62a^{2}-18a-10$, $2a^{8}-3a^{7}-17a^{6}+21a^{5}+40a^{4}-33a^{3}-35a^{2}+13a+9$, $6a^{9}-13a^{8}-45a^{7}+96a^{6}+79a^{5}-170a^{4}-45a^{3}+90a^{2}+5a-11$, $4a^{9}-10a^{8}-28a^{7}+76a^{6}+38a^{5}-145a^{4}-5a^{3}+91a^{2}-5a-15$, $4a^{9}-12a^{8}-24a^{7}+90a^{6}+11a^{5}-164a^{4}+32a^{3}+96a^{2}-17a-15$, $3a^{9}-9a^{8}-18a^{7}+68a^{6}+8a^{5}-127a^{4}+25a^{3}+79a^{2}-12a-13$
|
| |
| Regulator: | \( 334.297503967 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{10}\cdot(2\pi)^{0}\cdot 334.297503967 \cdot 1}{2\cdot\sqrt{983479472873}}\cr\approx \mathstrut & 0.172591914017 \end{aligned}\]
Galois group
| A non-solvable group of order 3628800 |
| The 42 conjugacy class representatives for $S_{10}$ |
| Character table for $S_{10}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 45 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.6.0.1}{6} }{,}\,{\href{/padicField/2.4.0.1}{4} }$ | ${\href{/padicField/3.10.0.1}{10} }$ | ${\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.3.0.1}{3} }^{2}$ | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.4.0.1}{4} }$ | ${\href{/padicField/11.10.0.1}{10} }$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.7.0.1}{7} }{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.10.0.1}{10} }$ | ${\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.10.0.1}{10} }$ | ${\href{/padicField/31.7.0.1}{7} }{,}\,{\href{/padicField/31.3.0.1}{3} }$ | ${\href{/padicField/37.5.0.1}{5} }{,}\,{\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.2.0.1}{2} }$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.4.0.1}{4} }$ | ${\href{/padicField/53.9.0.1}{9} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(1567\)
| $\Q_{1567}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
|
\(627619319\)
| $\Q_{627619319}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{627619319}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |