Normalized defining polynomial
\( x^{10} - 2x^{9} - 8x^{8} + 15x^{7} + 19x^{6} - 32x^{5} - 18x^{4} + 22x^{3} + 8x^{2} - 3x - 1 \)
Invariants
| Degree: | $10$ |
| |
| Signature: | $[10, 0]$ |
| |
| Discriminant: |
\(1086015136753\)
\(\medspace = 43^{2}\cdot 4583\cdot 128159\)
|
| |
| Root discriminant: | \(15.98\) |
| |
| Galois root discriminant: | $43^{2/3}4583^{1/2}128159^{1/2}\approx 297459.91809924005$ | ||
| Ramified primes: |
\(43\), \(4583\), \(128159\)
|
| |
| Discriminant root field: | $\Q(\sqrt{587352697}$) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $9$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$2a^{9}-5a^{8}-14a^{7}+37a^{6}+24a^{5}-75a^{4}-10a^{3}+45a^{2}+2a-4$, $a$, $7a^{9}-16a^{8}-51a^{7}+119a^{6}+95a^{5}-247a^{4}-44a^{3}+159a^{2}-18$, $5a^{9}-11a^{8}-37a^{7}+82a^{6}+71a^{5}-172a^{4}-34a^{3}+114a^{2}-2a-14$, $a^{9}-2a^{8}-8a^{7}+15a^{6}+19a^{5}-32a^{4}-18a^{3}+22a^{2}+7a-2$, $a^{9}-3a^{8}-7a^{7}+24a^{6}+12a^{5}-56a^{4}-4a^{3}+42a^{2}-5$, $a^{9}-2a^{8}-8a^{7}+15a^{6}+19a^{5}-32a^{4}-18a^{3}+22a^{2}+7a-3$, $6a^{9}-13a^{8}-44a^{7}+95a^{6}+83a^{5}-191a^{4}-40a^{3}+116a^{2}-11$, $a^{9}-4a^{8}-5a^{7}+31a^{6}-a^{5}-68a^{4}+16a^{3}+48a^{2}-8a-7$
|
| |
| Regulator: | \( 355.053110684 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{10}\cdot(2\pi)^{0}\cdot 355.053110684 \cdot 1}{2\cdot\sqrt{1086015136753}}\cr\approx \mathstrut & 0.174439705054 \end{aligned}\]
Galois group
| A non-solvable group of order 3628800 |
| The 42 conjugacy class representatives for $S_{10}$ |
| Character table for $S_{10}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 45 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.5.0.1}{5} }^{2}$ | ${\href{/padicField/3.6.0.1}{6} }{,}\,{\href{/padicField/3.4.0.1}{4} }$ | ${\href{/padicField/5.10.0.1}{10} }$ | ${\href{/padicField/7.7.0.1}{7} }{,}\,{\href{/padicField/7.3.0.1}{3} }$ | ${\href{/padicField/11.7.0.1}{7} }{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.10.0.1}{10} }$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{3}$ | ${\href{/padicField/23.9.0.1}{9} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.5.0.1}{5} }{,}\,{\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.2.0.1}{2} }$ | ${\href{/padicField/31.10.0.1}{10} }$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | R | ${\href{/padicField/47.9.0.1}{9} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.10.0.1}{10} }$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(43\)
| 43.1.3.2a1.2 | $x^{3} + 129$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ |
| 43.3.1.0a1.1 | $x^{3} + x + 40$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 43.4.1.0a1.1 | $x^{4} + 5 x^{2} + 42 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
|
\(4583\)
| $\Q_{4583}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $7$ | $1$ | $7$ | $0$ | $C_7$ | $$[\ ]^{7}$$ | ||
|
\(128159\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ |