Normalized defining polynomial
\( x^{10} - 4x^{9} + 8x^{8} - 10x^{7} + 9x^{6} - 6x^{5} + 4x^{4} - 4x^{3} + 4x^{2} - 2x + 1 \)
Invariants
Degree: | $10$ |
| |
Signature: | $[0, 5]$ |
| |
Discriminant: |
\(-2505006080\)
\(\medspace = -\,2^{10}\cdot 5\cdot 29\cdot 16871\)
|
| |
Root discriminant: | \(8.71\) |
| |
Galois root discriminant: | $2^{15/8}5^{1/2}29^{1/2}16871^{1/2}\approx 5737.0106447913595$ | ||
Ramified primes: |
\(2\), \(5\), \(29\), \(16871\)
|
| |
Discriminant root field: | $\Q(\sqrt{-2446295}$) | ||
$\Aut(K/\Q)$: | $C_1$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $4$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$a$, $a^{8}-3a^{7}+5a^{6}-5a^{5}+4a^{4}-2a^{3}+2a^{2}-2a+2$, $a^{9}-4a^{8}+8a^{7}-9a^{6}+7a^{5}-4a^{4}+3a^{3}-3a^{2}+3a-1$, $a^{9}-4a^{8}+7a^{7}-7a^{6}+5a^{5}-3a^{4}+2a^{3}-3a^{2}+3a$
|
| |
Regulator: | \( 2.882840034154067 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{5}\cdot 2.882840034154067 \cdot 1}{2\cdot\sqrt{2505006080}}\cr\approx \mathstrut & 0.282023630174935 \end{aligned}\]
Galois group
A non-solvable group of order 3628800 |
The 42 conjugacy class representatives for $S_{10}$ |
Character table for $S_{10}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 20 sibling: | data not computed |
Degree 45 sibling: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.7.0.1}{7} }{,}\,{\href{/padicField/3.3.0.1}{3} }$ | R | ${\href{/padicField/7.9.0.1}{9} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.5.0.1}{5} }{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.10.0.1}{10} }$ | ${\href{/padicField/17.10.0.1}{10} }$ | ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.9.0.1}{9} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | R | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.7.0.1}{7} }{,}\,{\href{/padicField/37.3.0.1}{3} }$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.7.0.1}{7} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.5.0.1}{5} }{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.7.0.1}{7} }{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.5.2.10a7.1 | $x^{10} + 2 x^{9} + 2 x^{8} + 4 x^{7} + 4 x^{6} + 6 x^{5} + 5 x^{4} + 4 x^{3} + 6 x^{2} + 2 x + 5$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $$[2, 2, 2, 2]^{5}$$ |
\(5\)
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
5.3.1.0a1.1 | $x^{3} + 3 x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
5.5.1.0a1.1 | $x^{5} + 4 x + 3$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | |
\(29\)
| 29.1.2.1a1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
29.8.1.0a1.1 | $x^{8} + 3 x^{4} + 24 x^{3} + 26 x^{2} + 23 x + 2$ | $1$ | $8$ | $0$ | $C_8$ | $$[\ ]^{8}$$ | |
\(16871\)
| $\Q_{16871}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
$\Q_{16871}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
$\Q_{16871}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
$\Q_{16871}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |