Properties

Label 6.6.485125.1-59.3-d
Base field 6.6.485125.1
Weight $[2, 2, 2, 2, 2, 2]$
Level norm $59$
Level $[59, 59, 2 w^5 - 3 w^4 - 9 w^3 + 11 w^2 + 9 w - 4]$
Dimension $2$
CM no
Base change no

Related objects

Downloads

Learn more

Base field 6.6.485125.1

Generator \(w\), with minimal polynomial \(x^6 - 2 x^5 - 4 x^4 + 8 x^3 + 2 x^2 - 5 x + 1\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2, 2, 2]$
Level: $[59, 59, 2 w^5 - 3 w^4 - 9 w^3 + 11 w^2 + 9 w - 4]$
Dimension: $2$
CM: no
Base change: no
Newspace dimension: $8$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^2 - 2 x - 4\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
9 $[9, 3, -w^2 + 2]$ $\phantom{-}e$
19 $[19, 19, -w^3 + 4 w]$ $\phantom{-}6$
19 $[19, 19, w^3 - 3 w - 1]$ $\phantom{-}\frac{1}{2} e - 1$
29 $[29, 29, w^5 - w^4 - 6 w^3 + 4 w^2 + 8 w - 3]$ $\phantom{-}\frac{5}{2} e + 1$
29 $[29, 29, w^4 - w^3 - 4 w^2 + 2 w + 2]$ $-e$
31 $[31, 31, -w^4 + 4 w^2 + w - 3]$ $\phantom{-}\frac{3}{2} e - 6$
41 $[41, 41, 2 w^5 - 2 w^4 - 10 w^3 + 7 w^2 + 11 w - 4]$ $-4 e + 6$
49 $[49, 7, -2 w^5 + 3 w^4 + 10 w^3 - 12 w^2 - 11 w + 6]$ $\phantom{-}2 e + 2$
59 $[59, 59, w^5 - 2 w^4 - 5 w^3 + 8 w^2 + 7 w - 5]$ $-4 e + 4$
59 $[59, 59, w^5 - w^4 - 4 w^3 + 3 w^2 + 3 w - 3]$ $-\frac{1}{2} e$
59 $[59, 59, 2 w^5 - 3 w^4 - 9 w^3 + 11 w^2 + 9 w - 4]$ $-1$
61 $[61, 61, -w^5 + w^4 + 5 w^3 - 3 w^2 - 7 w + 1]$ $\phantom{-}\frac{11}{2} e - 4$
64 $[64, 2, -2]$ $-1$
71 $[71, 71, -2 w^5 + 2 w^4 + 10 w^3 - 8 w^2 - 11 w + 6]$ $-3 e + 6$
79 $[79, 79, -3 w^5 + 4 w^4 + 13 w^3 - 14 w^2 - 9 w + 5]$ $-2 e + 2$
79 $[79, 79, -w^4 - w^3 + 5 w^2 + 4 w - 3]$ $\phantom{-}e - 4$
79 $[79, 79, -2 w^5 + 2 w^4 + 9 w^3 - 7 w^2 - 8 w + 4]$ $-10$
81 $[81, 3, 3 w^5 - 5 w^4 - 14 w^3 + 19 w^2 + 13 w - 8]$ $\phantom{-}\frac{3}{2} e + 11$
89 $[89, 89, 2 w^5 - 2 w^4 - 9 w^3 + 6 w^2 + 8 w - 1]$ $\phantom{-}\frac{3}{2} e - 8$
101 $[101, 101, -w^4 - w^3 + 5 w^2 + 3 w - 3]$ $\phantom{-}3 e - 4$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$59$ $[59, 59, 2 w^5 - 3 w^4 - 9 w^3 + 11 w^2 + 9 w - 4]$ $1$