# Properties

 Base field 6.6.485125.1 Weight [2, 2, 2, 2, 2, 2] Level norm 59 Level $[59, 59, 2w^{5} - 3w^{4} - 9w^{3} + 11w^{2} + 9w - 4]$ Label 6.6.485125.1-59.3-d Dimension 2 CM no Base change no

# Related objects

• L-function not available

## Base field 6.6.485125.1

Generator $$w$$, with minimal polynomial $$x^{6} - 2x^{5} - 4x^{4} + 8x^{3} + 2x^{2} - 5x + 1$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight [2, 2, 2, 2, 2, 2] Level $[59, 59, 2w^{5} - 3w^{4} - 9w^{3} + 11w^{2} + 9w - 4]$ Label 6.6.485125.1-59.3-d Dimension 2 Is CM no Is base change no Parent newspace dimension 8

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
$$x^{2} - 2x - 4$$
Norm Prime Eigenvalue
9 $[9, 3, -w^{2} + 2]$ $\phantom{-}e$
19 $[19, 19, -w^{3} + 4w]$ $\phantom{-}6$
19 $[19, 19, w^{3} - 3w - 1]$ $\phantom{-}\frac{1}{2}e - 1$
29 $[29, 29, w^{5} - w^{4} - 6w^{3} + 4w^{2} + 8w - 3]$ $\phantom{-}\frac{5}{2}e + 1$
29 $[29, 29, w^{4} - w^{3} - 4w^{2} + 2w + 2]$ $-e$
31 $[31, 31, -w^{4} + 4w^{2} + w - 3]$ $\phantom{-}\frac{3}{2}e - 6$
41 $[41, 41, 2w^{5} - 2w^{4} - 10w^{3} + 7w^{2} + 11w - 4]$ $-4e + 6$
49 $[49, 7, -2w^{5} + 3w^{4} + 10w^{3} - 12w^{2} - 11w + 6]$ $\phantom{-}2e + 2$
59 $[59, 59, w^{5} - 2w^{4} - 5w^{3} + 8w^{2} + 7w - 5]$ $-4e + 4$
59 $[59, 59, w^{5} - w^{4} - 4w^{3} + 3w^{2} + 3w - 3]$ $-\frac{1}{2}e$
59 $[59, 59, 2w^{5} - 3w^{4} - 9w^{3} + 11w^{2} + 9w - 4]$ $-1$
61 $[61, 61, -w^{5} + w^{4} + 5w^{3} - 3w^{2} - 7w + 1]$ $\phantom{-}\frac{11}{2}e - 4$
64 $[64, 2, -2]$ $-1$
71 $[71, 71, -2w^{5} + 2w^{4} + 10w^{3} - 8w^{2} - 11w + 6]$ $-3e + 6$
79 $[79, 79, -3w^{5} + 4w^{4} + 13w^{3} - 14w^{2} - 9w + 5]$ $-2e + 2$
79 $[79, 79, -w^{4} - w^{3} + 5w^{2} + 4w - 3]$ $\phantom{-}e - 4$
79 $[79, 79, -2w^{5} + 2w^{4} + 9w^{3} - 7w^{2} - 8w + 4]$ $-10$
81 $[81, 3, 3w^{5} - 5w^{4} - 14w^{3} + 19w^{2} + 13w - 8]$ $\phantom{-}\frac{3}{2}e + 11$
89 $[89, 89, 2w^{5} - 2w^{4} - 9w^{3} + 6w^{2} + 8w - 1]$ $\phantom{-}\frac{3}{2}e - 8$
101 $[101, 101, -w^{4} - w^{3} + 5w^{2} + 3w - 3]$ $\phantom{-}3e - 4$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
59 $[59, 59, 2w^{5} - 3w^{4} - 9w^{3} + 11w^{2} + 9w - 4]$ $1$