Properties

Label 6.6.485125.1-49.1-f
Base field 6.6.485125.1
Weight $[2, 2, 2, 2, 2, 2]$
Level norm $49$
Level $[49, 7, -2 w^5 + 3 w^4 + 10 w^3 - 12 w^2 - 11 w + 6]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more

Base field 6.6.485125.1

Generator \(w\), with minimal polynomial \(x^6 - 2 x^5 - 4 x^4 + 8 x^3 + 2 x^2 - 5 x + 1\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2, 2, 2]$
Level: $[49, 7, -2 w^5 + 3 w^4 + 10 w^3 - 12 w^2 - 11 w + 6]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $9$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
9 $[9, 3, -w^2 + 2]$ $-4$
19 $[19, 19, -w^3 + 4 w]$ $-1$
19 $[19, 19, w^3 - 3 w - 1]$ $\phantom{-}0$
29 $[29, 29, w^5 - w^4 - 6 w^3 + 4 w^2 + 8 w - 3]$ $-2$
29 $[29, 29, w^4 - w^3 - 4 w^2 + 2 w + 2]$ $\phantom{-}5$
31 $[31, 31, -w^4 + 4 w^2 + w - 3]$ $\phantom{-}1$
41 $[41, 41, 2 w^5 - 2 w^4 - 10 w^3 + 7 w^2 + 11 w - 4]$ $-10$
49 $[49, 7, -2 w^5 + 3 w^4 + 10 w^3 - 12 w^2 - 11 w + 6]$ $\phantom{-}1$
59 $[59, 59, w^5 - 2 w^4 - 5 w^3 + 8 w^2 + 7 w - 5]$ $\phantom{-}9$
59 $[59, 59, w^5 - w^4 - 4 w^3 + 3 w^2 + 3 w - 3]$ $-10$
59 $[59, 59, 2 w^5 - 3 w^4 - 9 w^3 + 11 w^2 + 9 w - 4]$ $\phantom{-}7$
61 $[61, 61, -w^5 + w^4 + 5 w^3 - 3 w^2 - 7 w + 1]$ $\phantom{-}5$
64 $[64, 2, -2]$ $\phantom{-}1$
71 $[71, 71, -2 w^5 + 2 w^4 + 10 w^3 - 8 w^2 - 11 w + 6]$ $-15$
79 $[79, 79, -3 w^5 + 4 w^4 + 13 w^3 - 14 w^2 - 9 w + 5]$ $-9$
79 $[79, 79, -w^4 - w^3 + 5 w^2 + 4 w - 3]$ $-11$
79 $[79, 79, -2 w^5 + 2 w^4 + 9 w^3 - 7 w^2 - 8 w + 4]$ $\phantom{-}2$
81 $[81, 3, 3 w^5 - 5 w^4 - 14 w^3 + 19 w^2 + 13 w - 8]$ $-1$
89 $[89, 89, 2 w^5 - 2 w^4 - 9 w^3 + 6 w^2 + 8 w - 1]$ $-3$
101 $[101, 101, -w^4 - w^3 + 5 w^2 + 3 w - 3]$ $-3$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$49$ $[49, 7, -2 w^5 + 3 w^4 + 10 w^3 - 12 w^2 - 11 w + 6]$ $-1$