Properties

Label 6.6.434581.1-13.2-a
Base field 6.6.434581.1
Weight $[2, 2, 2, 2, 2, 2]$
Level norm $13$
Level $[13,13,w^2 - w - 2]$
Dimension $2$
CM no
Base change no

Related objects

Downloads

Learn more

Base field 6.6.434581.1

Generator \(w\), with minimal polynomial \(x^6 - 2 x^5 - 4 x^4 + 5 x^3 + 4 x^2 - 2 x - 1\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2, 2, 2]$
Level: $[13,13,w^2 - w - 2]$
Dimension: $2$
CM: no
Base change: no
Newspace dimension: $2$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^2 + 2 x - 53\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
13 $[13, 13, -w^5 + 3 w^4 + 2 w^3 - 9 w^2 + w + 4]$ $\phantom{-}1$
13 $[13, 13, -w^2 + w + 2]$ $-1$
27 $[27, 3, 2 w^5 - 4 w^4 - 7 w^3 + 9 w^2 + 4 w - 2]$ $\phantom{-}2$
27 $[27, 3, -2 w^5 + 5 w^4 + 5 w^3 - 12 w^2 - w + 5]$ $\phantom{-}e$
29 $[29, 29, w^3 - 2 w^2 - 2 w + 3]$ $\phantom{-}6$
29 $[29, 29, 2 w^5 - 4 w^4 - 7 w^3 + 8 w^2 + 4 w - 2]$ $\phantom{-}e + 4$
43 $[43, 43, -w^5 + 3 w^4 + w^3 - 6 w^2 + 3 w + 1]$ $\phantom{-}7$
43 $[43, 43, -w^4 + w^3 + 5 w^2 - 4]$ $-e - 6$
49 $[49, 7, w^5 - 4 w^4 + 11 w^2 - 3 w - 4]$ $-4$
64 $[64, 2, -2]$ $\phantom{-}e - 4$
71 $[71, 71, 2 w^5 - 6 w^4 - 4 w^3 + 17 w^2 - w - 6]$ $-2 e - 2$
71 $[71, 71, 2 w^4 - 4 w^3 - 6 w^2 + 7 w + 2]$ $-6$
71 $[71, 71, -w^5 + 3 w^4 + 2 w^3 - 7 w^2 - w]$ $\phantom{-}9$
71 $[71, 71, -2 w^5 + 5 w^4 + 6 w^3 - 14 w^2 - 3 w + 5]$ $-e - 4$
83 $[83, 83, -3 w^5 + 7 w^4 + 9 w^3 - 17 w^2 - 5 w + 5]$ $\phantom{-}6$
83 $[83, 83, 3 w^5 - 6 w^4 - 10 w^3 + 12 w^2 + 5 w - 2]$ $-2 e - 5$
83 $[83, 83, -2 w^5 + 5 w^4 + 5 w^3 - 11 w^2 - 3 w + 3]$ $\phantom{-}6$
83 $[83, 83, 3 w^5 - 7 w^4 - 8 w^3 + 15 w^2 + 2 w - 4]$ $\phantom{-}2 e + 2$
97 $[97, 97, -3 w^5 + 6 w^4 + 10 w^3 - 12 w^2 - 5 w + 3]$ $-e - 6$
97 $[97, 97, w^5 - 2 w^4 - 4 w^3 + 5 w^2 + 5 w - 3]$ $-2 e$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$13$ $[13,13,w^2 - w - 2]$ $1$