Properties

Label 5.5.70601.1-47.1-d
Base field 5.5.70601.1
Weight $[2, 2, 2, 2, 2]$
Level norm $47$
Level $[47, 47, w^4 - 2 w^3 - 3 w^2 + 5 w]$
Dimension $6$
CM no
Base change no

Related objects

Downloads

Learn more

Base field 5.5.70601.1

Generator \(w\), with minimal polynomial \(x^5 - x^4 - 5 x^3 + 2 x^2 + 3 x - 1\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2, 2]$
Level: $[47, 47, w^4 - 2 w^3 - 3 w^2 + 5 w]$
Dimension: $6$
CM: no
Base change: no
Newspace dimension: $21$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^6 + 5 x^5 - 3 x^4 - 31 x^3 + 2 x^2 + 43 x - 20\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
7 $[7, 7, w^4 - 6 w^2 - 2 w + 4]$ $\phantom{-}e$
9 $[9, 3, -w^4 + w^3 + 5 w^2 - w - 4]$ $\phantom{-}\frac{4}{11} e^5 + 2 e^4 - \frac{1}{11} e^3 - \frac{119}{11} e^2 - \frac{57}{11} e + \frac{83}{11}$
11 $[11, 11, -2 w^4 + w^3 + 10 w^2 + w - 3]$ $-\frac{6}{11} e^5 - 3 e^4 - \frac{4}{11} e^3 + \frac{173}{11} e^2 + \frac{113}{11} e - \frac{174}{11}$
11 $[11, 11, w^4 - 6 w^2 - 3 w + 3]$ $\phantom{-}\frac{3}{11} e^5 + e^4 - \frac{20}{11} e^3 - \frac{59}{11} e^2 + \frac{48}{11} e + \frac{32}{11}$
17 $[17, 17, w^2 - 2]$ $\phantom{-}\frac{7}{11} e^5 + 4 e^4 + \frac{23}{11} e^3 - \frac{233}{11} e^2 - \frac{196}{11} e + \frac{247}{11}$
23 $[23, 23, -w^3 + w^2 + 3 w]$ $\phantom{-}\frac{1}{11} e^5 + e^4 + \frac{19}{11} e^3 - \frac{71}{11} e^2 - \frac{116}{11} e + \frac{84}{11}$
27 $[27, 3, w^4 - w^3 - 4 w^2 + 2 w - 1]$ $-\frac{7}{11} e^5 - 3 e^4 + \frac{21}{11} e^3 + \frac{178}{11} e^2 + \frac{20}{11} e - \frac{148}{11}$
29 $[29, 29, 2 w^4 - 2 w^3 - 9 w^2 + 2 w + 3]$ $-\frac{3}{11} e^5 - 2 e^4 - \frac{13}{11} e^3 + \frac{136}{11} e^2 + \frac{84}{11} e - \frac{197}{11}$
32 $[32, 2, -2]$ $-\frac{12}{11} e^5 - 7 e^4 - \frac{41}{11} e^3 + \frac{412}{11} e^2 + \frac{336}{11} e - \frac{447}{11}$
47 $[47, 47, w^4 - 2 w^3 - 3 w^2 + 5 w]$ $-1$
47 $[47, 47, w^3 - w^2 - 4 w - 1]$ $\phantom{-}\frac{8}{11} e^5 + 4 e^4 - \frac{2}{11} e^3 - \frac{249}{11} e^2 - \frac{136}{11} e + \frac{254}{11}$
53 $[53, 53, -w^4 + 7 w^2 - 3]$ $-\frac{6}{11} e^5 - 3 e^4 + \frac{7}{11} e^3 + \frac{206}{11} e^2 + \frac{91}{11} e - \frac{229}{11}$
53 $[53, 53, 2 w^4 - 2 w^3 - 9 w^2 + 2 w + 2]$ $-\frac{1}{11} e^5 + \frac{14}{11} e^3 - \frac{17}{11} e^2 - \frac{60}{11} e + \frac{37}{11}$
53 $[53, 53, 3 w^4 - 2 w^3 - 16 w^2 + 8]$ $-\frac{1}{11} e^5 - e^4 - \frac{19}{11} e^3 + \frac{60}{11} e^2 + \frac{72}{11} e - \frac{95}{11}$
67 $[67, 67, -w^4 + 6 w^2 + 4 w - 3]$ $-\frac{12}{11} e^5 - 6 e^4 + \frac{3}{11} e^3 + \frac{357}{11} e^2 + \frac{127}{11} e - \frac{326}{11}$
73 $[73, 73, 2 w^4 - 12 w^2 - 4 w + 5]$ $\phantom{-}\frac{3}{11} e^5 + 2 e^4 + \frac{24}{11} e^3 - \frac{81}{11} e^2 - \frac{106}{11} e - \frac{23}{11}$
83 $[83, 83, w^4 - 5 w^2 - 3 w + 3]$ $\phantom{-}e^4 + 3 e^3 - 7 e^2 - 14 e + 14$
97 $[97, 97, -w^4 + w^3 + 5 w^2 - 3 w - 3]$ $\phantom{-}\frac{9}{11} e^5 + 5 e^4 + \frac{6}{11} e^3 - \frac{342}{11} e^2 - \frac{175}{11} e + \frac{338}{11}$
103 $[103, 103, 2 w^3 - 3 w^2 - 7 w + 3]$ $\phantom{-}\frac{1}{11} e^5 - \frac{14}{11} e^3 + \frac{6}{11} e^2 + \frac{16}{11} e - \frac{4}{11}$
109 $[109, 109, -3 w^4 + 2 w^3 + 14 w^2 + w - 6]$ $\phantom{-}\frac{12}{11} e^5 + 7 e^4 + \frac{52}{11} e^3 - \frac{346}{11} e^2 - \frac{336}{11} e + \frac{249}{11}$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$47$ $[47, 47, w^4 - 2 w^3 - 3 w^2 + 5 w]$ $1$