Properties

Label 5.5.65657.1-29.1-c
Base field 5.5.65657.1
Weight $[2, 2, 2, 2, 2]$
Level norm $29$
Level $[29, 29, 2 w^4 - 3 w^3 - 8 w^2 + 7 w + 4]$
Dimension $8$
CM no
Base change no

Related objects

Downloads

Learn more

Base field 5.5.65657.1

Generator \(w\), with minimal polynomial \(x^5 - x^4 - 5 x^3 + 2 x^2 + 5 x + 1\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2, 2]$
Level: $[29, 29, 2 w^4 - 3 w^3 - 8 w^2 + 7 w + 4]$
Dimension: $8$
CM: no
Base change: no
Newspace dimension: $12$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^8 - x^7 - 18 x^6 + 19 x^5 + 91 x^4 - 76 x^3 - 152 x^2 + 64 x + 64\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
3 $[3, 3, -w^4 + w^3 + 4 w^2 - 2 w - 2]$ $\phantom{-}e$
5 $[5, 5, w^2 - w - 2]$ $-\frac{1}{8} e^7 + \frac{15}{8} e^5 - \frac{5}{8} e^4 - \frac{27}{4} e^3 + \frac{21}{8} e^2 + 5 e - 1$
19 $[19, 19, w^4 - 2 w^3 - 4 w^2 + 5 w + 4]$ $\phantom{-}\frac{3}{16} e^7 + \frac{3}{16} e^6 - \frac{11}{4} e^5 - \frac{19}{16} e^4 + \frac{179}{16} e^3 - \frac{1}{8} e^2 - 13 e + 3$
23 $[23, 23, -w^3 + w^2 + 3 w - 1]$ $\phantom{-}\frac{3}{16} e^7 + \frac{7}{16} e^6 - \frac{5}{2} e^5 - \frac{83}{16} e^4 + \frac{143}{16} e^3 + \frac{137}{8} e^2 - \frac{19}{2} e - 10$
29 $[29, 29, 2 w^4 - 3 w^3 - 8 w^2 + 7 w + 4]$ $\phantom{-}1$
32 $[32, 2, 2]$ $-\frac{3}{16} e^7 - \frac{5}{16} e^6 + \frac{23}{8} e^5 + \frac{55}{16} e^4 - \frac{201}{16} e^3 - \frac{41}{4} e^2 + \frac{25}{2} e + 9$
37 $[37, 37, w^3 - 2 w^2 - 2 w + 2]$ $-\frac{1}{8} e^7 - \frac{3}{8} e^6 + \frac{7}{4} e^5 + \frac{37}{8} e^4 - \frac{63}{8} e^3 - 15 e^2 + 12 e + 12$
41 $[41, 41, -2 w^4 + 3 w^3 + 9 w^2 - 8 w - 6]$ $-\frac{3}{16} e^7 - \frac{3}{16} e^6 + \frac{11}{4} e^5 + \frac{19}{16} e^4 - \frac{179}{16} e^3 - \frac{7}{8} e^2 + 14 e + 1$
43 $[43, 43, -2 w^4 + 3 w^3 + 8 w^2 - 8 w - 6]$ $\phantom{-}\frac{9}{16} e^7 + \frac{5}{16} e^6 - 8 e^5 - \frac{17}{16} e^4 + \frac{429}{16} e^3 - \frac{1}{8} e^2 - 16 e + 2$
47 $[47, 47, w^4 - 2 w^3 - 5 w^2 + 6 w + 5]$ $-\frac{1}{16} e^7 + \frac{3}{16} e^6 + e^5 - \frac{55}{16} e^4 - \frac{53}{16} e^3 + \frac{121}{8} e^2 + e - 14$
53 $[53, 53, -w^4 + w^3 + 4 w^2 - w - 4]$ $-\frac{1}{8} e^7 + \frac{3}{8} e^6 + 2 e^5 - \frac{47}{8} e^4 - \frac{53}{8} e^3 + \frac{73}{4} e^2 + 5 e - 6$
61 $[61, 61, w^2 - 2 w - 3]$ $\phantom{-}\frac{1}{4} e^7 + \frac{1}{2} e^6 - \frac{13}{4} e^5 - \frac{19}{4} e^4 + 10 e^3 + \frac{33}{4} e^2 - e + 4$
67 $[67, 67, w^4 - w^3 - 4 w^2 + 3 w]$ $\phantom{-}\frac{5}{16} e^7 + \frac{9}{16} e^6 - 4 e^5 - \frac{85}{16} e^4 + \frac{209}{16} e^3 + \frac{91}{8} e^2 - \frac{23}{2} e - 2$
67 $[67, 67, -w^4 + w^3 + 5 w^2 - 2 w - 2]$ $-\frac{3}{16} e^7 + \frac{1}{16} e^6 + \frac{5}{2} e^5 - \frac{37}{16} e^4 - \frac{119}{16} e^3 + \frac{71}{8} e^2 + 7 e - 3$
71 $[71, 71, w^4 - w^3 - 4 w^2 + 5]$ $-\frac{1}{16} e^7 + \frac{3}{16} e^6 + \frac{1}{2} e^5 - \frac{63}{16} e^4 + \frac{27}{16} e^3 + \frac{133}{8} e^2 - \frac{15}{2} e - 10$
71 $[71, 71, w^4 - 2 w^3 - 3 w^2 + 5 w + 3]$ $\phantom{-}\frac{1}{4} e^7 + \frac{5}{8} e^6 - \frac{23}{8} e^5 - \frac{13}{2} e^4 + \frac{59}{8} e^3 + \frac{137}{8} e^2 - 5 e - 7$
71 $[71, 71, 2 w^4 - 2 w^3 - 8 w^2 + 5 w + 4]$ $-\frac{3}{8} e^7 - \frac{5}{8} e^6 + \frac{19}{4} e^5 + \frac{47}{8} e^4 - \frac{113}{8} e^3 - \frac{29}{2} e^2 + 8 e + 12$
73 $[73, 73, -2 w^4 + 2 w^3 + 9 w^2 - 5 w - 6]$ $\phantom{-}\frac{1}{16} e^7 + \frac{1}{16} e^6 - \frac{3}{4} e^5 + \frac{7}{16} e^4 + \frac{33}{16} e^3 - \frac{63}{8} e^2 - \frac{3}{2} e + 10$
81 $[81, 3, -2 w^4 + 3 w^3 + 10 w^2 - 9 w - 10]$ $-\frac{1}{4} e^7 - \frac{1}{4} e^6 + 3 e^5 + \frac{1}{4} e^4 - \frac{29}{4} e^3 + \frac{21}{2} e^2 - e - 14$
97 $[97, 97, -2 w^4 + 3 w^3 + 7 w^2 - 5 w - 4]$ $-\frac{1}{8} e^7 - \frac{5}{8} e^6 + \frac{49}{8} e^4 + \frac{91}{8} e^3 - \frac{55}{4} e^2 - 26 e + 4$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$29$ $[29, 29, 2 w^4 - 3 w^3 - 8 w^2 + 7 w + 4]$ $-1$