Properties

Label 5.5.65657.1-29.1-b
Base field 5.5.65657.1
Weight $[2, 2, 2, 2, 2]$
Level norm $29$
Level $[29, 29, 2 w^4 - 3 w^3 - 8 w^2 + 7 w + 4]$
Dimension $3$
CM no
Base change no

Related objects

Downloads

Learn more

Base field 5.5.65657.1

Generator \(w\), with minimal polynomial \(x^5 - x^4 - 5 x^3 + 2 x^2 + 5 x + 1\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2, 2]$
Level: $[29, 29, 2 w^4 - 3 w^3 - 8 w^2 + 7 w + 4]$
Dimension: $3$
CM: no
Base change: no
Newspace dimension: $12$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^3 - 6 x - 1\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
3 $[3, 3, -w^4 + w^3 + 4 w^2 - 2 w - 2]$ $\phantom{-}e$
5 $[5, 5, w^2 - w - 2]$ $-e$
19 $[19, 19, w^4 - 2 w^3 - 4 w^2 + 5 w + 4]$ $-e^2 - 1$
23 $[23, 23, -w^3 + w^2 + 3 w - 1]$ $-2 e^2 + 8$
29 $[29, 29, 2 w^4 - 3 w^3 - 8 w^2 + 7 w + 4]$ $-1$
32 $[32, 2, 2]$ $\phantom{-}2 e^2 - 9$
37 $[37, 37, w^3 - 2 w^2 - 2 w + 2]$ $-2 e^2 - e + 7$
41 $[41, 41, -2 w^4 + 3 w^3 + 9 w^2 - 8 w - 6]$ $-e + 1$
43 $[43, 43, -2 w^4 + 3 w^3 + 8 w^2 - 8 w - 6]$ $\phantom{-}2 e - 6$
47 $[47, 47, w^4 - 2 w^3 - 5 w^2 + 6 w + 5]$ $-e^2 - e + 1$
53 $[53, 53, -w^4 + w^3 + 4 w^2 - w - 4]$ $\phantom{-}0$
61 $[61, 61, w^2 - 2 w - 3]$ $\phantom{-}3 e^2 - 4 e - 13$
67 $[67, 67, w^4 - w^3 - 4 w^2 + 3 w]$ $\phantom{-}2 e^2 + 2 e - 12$
67 $[67, 67, -w^4 + w^3 + 5 w^2 - 2 w - 2]$ $\phantom{-}e^2 - 2 e - 12$
71 $[71, 71, w^4 - w^3 - 4 w^2 + 5]$ $\phantom{-}3 e - 3$
71 $[71, 71, w^4 - 2 w^3 - 3 w^2 + 5 w + 3]$ $\phantom{-}e^2 + 3 e - 11$
71 $[71, 71, 2 w^4 - 2 w^3 - 8 w^2 + 5 w + 4]$ $\phantom{-}e^2 + 2 e - 13$
73 $[73, 73, -2 w^4 + 2 w^3 + 9 w^2 - 5 w - 6]$ $-4$
81 $[81, 3, -2 w^4 + 3 w^3 + 10 w^2 - 9 w - 10]$ $\phantom{-}3 e^2 - e - 15$
97 $[97, 97, -2 w^4 + 3 w^3 + 7 w^2 - 5 w - 4]$ $-2 e^2 + 3 e + 3$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$29$ $[29, 29, 2 w^4 - 3 w^3 - 8 w^2 + 7 w + 4]$ $1$