Properties

Label 5.5.38569.1-67.1-a
Base field 5.5.38569.1
Weight $[2, 2, 2, 2, 2]$
Level norm $67$
Level $[67, 67, -w^3 + w^2 + 3 w - 4]$
Dimension $6$
CM no
Base change no

Related objects

Downloads

Learn more

Base field 5.5.38569.1

Generator \(w\), with minimal polynomial \(x^5 - 5 x^3 + 4 x - 1\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2, 2]$
Level: $[67, 67, -w^3 + w^2 + 3 w - 4]$
Dimension: $6$
CM: no
Base change: no
Newspace dimension: $12$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^6 - 6 x^5 - 14 x^4 + 128 x^3 - 122 x^2 - 334 x + 486\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
7 $[7, 7, -w^2 + 2]$ $\phantom{-}e$
11 $[11, 11, -w^3 + w^2 + 4 w - 2]$ $-\frac{49}{11} e^5 + \frac{175}{11} e^4 + 101 e^3 - \frac{3577}{11} e^2 - \frac{2698}{11} e + \frac{9820}{11}$
11 $[11, 11, w^3 - 3 w]$ $-\frac{69}{11} e^5 + \frac{248}{11} e^4 + 142 e^3 - \frac{5070}{11} e^2 - \frac{3777}{11} e + \frac{13944}{11}$
13 $[13, 13, w^4 - 5 w^2 + 2]$ $\phantom{-}\frac{69}{11} e^5 - \frac{248}{11} e^4 - 142 e^3 + \frac{5070}{11} e^2 + \frac{3777}{11} e - \frac{13900}{11}$
17 $[17, 17, w^3 - 3 w - 1]$ $-\frac{9}{11} e^5 + \frac{29}{11} e^4 + 19 e^3 - \frac{580}{11} e^2 - \frac{562}{11} e + \frac{1594}{11}$
32 $[32, 2, 2]$ $\phantom{-}\frac{108}{11} e^5 - \frac{392}{11} e^4 - 222 e^3 + \frac{8038}{11} e^2 + \frac{5897}{11} e - \frac{22197}{11}$
37 $[37, 37, w^4 + w^3 - 5 w^2 - 5 w + 4]$ $\phantom{-}\frac{181}{11} e^5 - \frac{648}{11} e^4 - 373 e^3 + \frac{13246}{11} e^2 + \frac{9969}{11} e - \frac{36352}{11}$
43 $[43, 43, w^2 + w - 3]$ $-\frac{1}{11} e^5 + \frac{13}{11} e^4 + e^3 - \frac{315}{11} e^2 + \frac{94}{11} e + \frac{1018}{11}$
43 $[43, 43, -w^4 + w^3 + 4 w^2 - 2 w - 2]$ $-\frac{157}{11} e^5 + \frac{567}{11} e^4 + 323 e^3 - \frac{11615}{11} e^2 - \frac{8595}{11} e + \frac{32006}{11}$
47 $[47, 47, -w^4 - w^3 + 6 w^2 + 4 w - 5]$ $-7 e^5 + 25 e^4 + 159 e^3 - 511 e^2 - 390 e + 1404$
59 $[59, 59, w^4 + w^3 - 6 w^2 - 4 w + 4]$ $\phantom{-}\frac{152}{11} e^5 - \frac{546}{11} e^4 - 313 e^3 + \frac{11173}{11} e^2 + \frac{8350}{11} e - \frac{30766}{11}$
67 $[67, 67, -w^3 + w^2 + 3 w - 4]$ $\phantom{-}1$
73 $[73, 73, w^4 - 3 w^2 - w - 1]$ $\phantom{-}\frac{141}{11} e^5 - \frac{502}{11} e^4 - 291 e^3 + \frac{10238}{11} e^2 + \frac{7844}{11} e - \frac{28016}{11}$
73 $[73, 73, -2 w^4 - w^3 + 9 w^2 + 5 w - 6]$ $-\frac{335}{11} e^5 + \frac{1209}{11} e^4 + 689 e^3 - \frac{24763}{11} e^2 - \frac{18285}{11} e + \frac{68230}{11}$
79 $[79, 79, -3 w^4 + 13 w^2 + 2 w - 7]$ $\phantom{-}\frac{104}{11} e^5 - \frac{373}{11} e^4 - 214 e^3 + \frac{7614}{11} e^2 + \frac{5690}{11} e - \frac{20842}{11}$
79 $[79, 79, -w^3 + 5 w]$ $-\frac{1}{11} e^5 + \frac{13}{11} e^4 + e^3 - \frac{315}{11} e^2 + \frac{50}{11} e + \frac{1040}{11}$
79 $[79, 79, -w^4 + 3 w^2 + 1]$ $\phantom{-}\frac{189}{11} e^5 - \frac{686}{11} e^4 - 388 e^3 + \frac{14061}{11} e^2 + \frac{10207}{11} e - \frac{38710}{11}$
83 $[83, 83, -2 w^4 - 2 w^3 + 11 w^2 + 7 w - 8]$ $\phantom{-}\frac{161}{11} e^5 - \frac{575}{11} e^4 - 332 e^3 + \frac{11742}{11} e^2 + \frac{8890}{11} e - \frac{32228}{11}$
89 $[89, 89, -w^4 - 2 w^3 + 4 w^2 + 7 w - 3]$ $\phantom{-}\frac{10}{11} e^5 - \frac{42}{11} e^4 - 20 e^3 + \frac{906}{11} e^2 + \frac{479}{11} e - \frac{2700}{11}$
101 $[101, 101, -w^4 + 5 w^2 - w - 4]$ $-\frac{124}{11} e^5 + \frac{457}{11} e^4 + 254 e^3 - \frac{9404}{11} e^2 - \frac{6670}{11} e + \frac{26088}{11}$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$67$ $[67, 67, -w^3 + w^2 + 3 w - 4]$ $-1$