Properties

Label 5.5.14641.1-67.2-a
Base field \(\Q(\zeta_{11})^+\)
Weight $[2, 2, 2, 2, 2]$
Level norm $67$
Level $[67,67,2 w^2 - w - 4]$
Dimension $2$
CM no
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\zeta_{11})^+\)

Generator \(w\), with minimal polynomial \(x^5 - x^4 - 4 x^3 + 3 x^2 + 3 x - 1\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2, 2]$
Level: $[67,67,2 w^2 - w - 4]$
Dimension: $2$
CM: no
Base change: no
Newspace dimension: $2$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^2 - 24\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
11 $[11, 11, w^4 + w^3 - 4 w^2 - 3 w + 2]$ $\phantom{-}e$
23 $[23, 23, -w^4 + 3 w^2 + 1]$ $-\frac{1}{2} e - 5$
23 $[23, 23, -w^4 + 3 w^2 + w - 2]$ $\phantom{-}4$
23 $[23, 23, w^4 - w^3 - 3 w^2 + 3 w + 2]$ $-e + 1$
23 $[23, 23, -w^4 + w^3 + 4 w^2 - 3 w - 1]$ $\phantom{-}\frac{1}{2} e + 3$
23 $[23, 23, -w^2 + w + 3]$ $\phantom{-}e + 2$
32 $[32, 2, 2]$ $-\frac{1}{2} e - 1$
43 $[43, 43, -2 w^4 + w^3 + 6 w^2 - 2 w - 1]$ $\phantom{-}9$
43 $[43, 43, -w^4 + 2 w^2 + w + 1]$ $\phantom{-}4$
43 $[43, 43, w^3 + w^2 - 4 w - 2]$ $\phantom{-}e - 3$
43 $[43, 43, 2 w^4 - w^3 - 7 w^2 + 3 w + 3]$ $\phantom{-}4$
43 $[43, 43, w^4 - w^3 - 4 w^2 + 4 w + 2]$ $-2 e - 2$
67 $[67, 67, 2 w^4 - 7 w^2 + 2]$ $\phantom{-}e - 4$
67 $[67, 67, w^4 - 2 w^3 - 3 w^2 + 6 w + 2]$ $\phantom{-}1$
67 $[67, 67, 2 w^4 - 7 w^2 - w + 4]$ $-2 e - 3$
67 $[67, 67, w^4 - 2 w^3 - 4 w^2 + 6 w + 2]$ $-2$
67 $[67, 67, -w^4 + w^3 + 5 w^2 - 3 w - 3]$ $-2 e + 2$
89 $[89, 89, w^3 + w^2 - 4 w - 1]$ $-e - 8$
89 $[89, 89, -2 w^4 + w^3 + 7 w^2 - 3 w - 2]$ $-\frac{5}{2} e - 5$
89 $[89, 89, -w^4 + w^3 + 4 w^2 - 4 w - 3]$ $\phantom{-}e + 8$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$67$ $[67,67,2 w^2 - w - 4]$ $-1$