Properties

Label 5.5.14641.1-43.2-b
Base field \(\Q(\zeta_{11})^+\)
Weight $[2, 2, 2, 2, 2]$
Level norm $43$
Level $[43,43,w^4 - 2 w^2 - w - 1]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\zeta_{11})^+\)

Generator \(w\), with minimal polynomial \(x^5 - x^4 - 4 x^3 + 3 x^2 + 3 x - 1\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2, 2]$
Level: $[43,43,w^4 - 2 w^2 - w - 1]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $2$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
11 $[11, 11, w^4 + w^3 - 4 w^2 - 3 w + 2]$ $-3$
23 $[23, 23, -w^4 + 3 w^2 + 1]$ $\phantom{-}4$
23 $[23, 23, -w^4 + 3 w^2 + w - 2]$ $\phantom{-}4$
23 $[23, 23, w^4 - w^3 - 3 w^2 + 3 w + 2]$ $-1$
23 $[23, 23, -w^4 + w^3 + 4 w^2 - 3 w - 1]$ $-1$
23 $[23, 23, -w^2 + w + 3]$ $\phantom{-}4$
32 $[32, 2, 2]$ $\phantom{-}3$
43 $[43, 43, -2 w^4 + w^3 + 6 w^2 - 2 w - 1]$ $-11$
43 $[43, 43, -w^4 + 2 w^2 + w + 1]$ $\phantom{-}1$
43 $[43, 43, w^3 + w^2 - 4 w - 2]$ $-1$
43 $[43, 43, 2 w^4 - w^3 - 7 w^2 + 3 w + 3]$ $\phantom{-}9$
43 $[43, 43, w^4 - w^3 - 4 w^2 + 4 w + 2]$ $\phantom{-}4$
67 $[67, 67, 2 w^4 - 7 w^2 + 2]$ $\phantom{-}13$
67 $[67, 67, w^4 - 2 w^3 - 3 w^2 + 6 w + 2]$ $-2$
67 $[67, 67, 2 w^4 - 7 w^2 - w + 4]$ $-2$
67 $[67, 67, w^4 - 2 w^3 - 4 w^2 + 6 w + 2]$ $-12$
67 $[67, 67, -w^4 + w^3 + 5 w^2 - 3 w - 3]$ $-2$
89 $[89, 89, w^3 + w^2 - 4 w - 1]$ $\phantom{-}5$
89 $[89, 89, -2 w^4 + w^3 + 7 w^2 - 3 w - 2]$ $\phantom{-}15$
89 $[89, 89, -w^4 + w^3 + 4 w^2 - 4 w - 3]$ $\phantom{-}0$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$43$ $[43,43,w^4 - 2 w^2 - w - 1]$ $-1$