Properties

Label 4.4.725.1-131.1-a
Base field 4.4.725.1
Weight $[2, 2, 2, 2]$
Level norm $131$
Level $[131, 131, -3 w^3 + 2 w^2 + 8 w - 2]$
Dimension $2$
CM no
Base change no

Related objects

Downloads

Learn more

Base field 4.4.725.1

Generator \(w\), with minimal polynomial \(x^4 - x^3 - 3 x^2 + x + 1\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[131, 131, -3 w^3 + 2 w^2 + 8 w - 2]$
Dimension: $2$
CM: no
Base change: no
Newspace dimension: $2$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^2 - 4 x - 8\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
11 $[11, 11, -w^3 + 2 w^2 + w - 3]$ $\phantom{-}e$
11 $[11, 11, w^3 - 3 w]$ $-e + 2$
16 $[16, 2, 2]$ $-\frac{1}{2} e + 1$
19 $[19, 19, -w^3 + 2 w + 2]$ $\phantom{-}\frac{1}{2} e + 3$
19 $[19, 19, 2 w^3 - 3 w^2 - 4 w + 2]$ $-e - 1$
25 $[25, 5, 2 w^3 - 2 w^2 - 4 w + 1]$ $\phantom{-}\frac{3}{2} e - 3$
29 $[29, 29, w^3 - w^2 - 4 w + 1]$ $-e - 2$
31 $[31, 31, w^3 - 4 w + 1]$ $\phantom{-}e - 2$
31 $[31, 31, -w^2 + 2 w + 3]$ $\phantom{-}e - 2$
41 $[41, 41, 2 w^2 - w - 3]$ $-e - 1$
41 $[41, 41, -w^3 + 3 w^2 + w - 4]$ $-\frac{3}{2} e + 5$
49 $[49, 7, 2 w^3 - 3 w^2 - 5 w + 2]$ $\phantom{-}e - 6$
49 $[49, 7, w^2 + w - 3]$ $\phantom{-}2 e - 7$
61 $[61, 61, 2 w^3 - 3 w^2 - 4 w]$ $\phantom{-}7$
61 $[61, 61, -3 w^3 + 4 w^2 + 7 w - 3]$ $-3 e + 10$
79 $[79, 79, 2 w^3 - 4 w^2 - 3 w + 2]$ $-2 e - 6$
79 $[79, 79, w^3 + w^2 - 3 w - 5]$ $\phantom{-}2 e + 1$
81 $[81, 3, -3]$ $\phantom{-}4 e - 10$
89 $[89, 89, -3 w^3 + 4 w^2 + 5 w - 3]$ $-2 e + 4$
89 $[89, 89, 3 w^3 - 2 w^2 - 7 w]$ $\phantom{-}2 e$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$131$ $[131, 131, -3 w^3 + 2 w^2 + 8 w - 2]$ $1$