Properties

Label 4.4.2048.1-62.1-b
Base field \(\Q(\zeta_{16})^+\)
Weight $[2, 2, 2, 2]$
Level norm $62$
Level $[62, 62, w^3 + w^2 - 5 w - 2]$
Dimension $2$
CM no
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\zeta_{16})^+\)

Generator \(w\), with minimal polynomial \(x^4 - 4 x^2 + 2\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[62, 62, w^3 + w^2 - 5 w - 2]$
Dimension: $2$
CM: no
Base change: no
Newspace dimension: $3$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^2 - 4 x - 2\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, w]$ $\phantom{-}1$
17 $[17, 17, -w^2 - w + 3]$ $\phantom{-}e$
17 $[17, 17, -w^3 - w^2 + 3 w + 1]$ $-2 e + 4$
17 $[17, 17, w^3 - w^2 - 3 w + 1]$ $\phantom{-}e$
17 $[17, 17, w^2 - w - 3]$ $-2 e + 4$
31 $[31, 31, w^3 + w^2 - 2 w - 3]$ $\phantom{-}2 e - 4$
31 $[31, 31, -w^3 + w^2 + 4 w - 1]$ $\phantom{-}1$
31 $[31, 31, w^3 + w^2 - 4 w - 1]$ $-e$
31 $[31, 31, -w^3 + w^2 + 2 w - 3]$ $\phantom{-}2 e - 4$
47 $[47, 47, -2 w^3 + w^2 + 5 w - 1]$ $-2$
47 $[47, 47, 2 w^3 + w^2 - 6 w - 1]$ $-2$
47 $[47, 47, -2 w^3 + w^2 + 6 w - 1]$ $-2$
47 $[47, 47, 2 w^3 + w^2 - 5 w - 1]$ $\phantom{-}3 e - 6$
49 $[49, 7, w^2 + 1]$ $\phantom{-}3 e - 4$
49 $[49, 7, -2 w^2 + 3]$ $\phantom{-}0$
79 $[79, 79, -w^3 - w^2 + 4 w - 1]$ $-e - 2$
79 $[79, 79, -w^3 + w^2 + 2 w - 5]$ $-2 e + 16$
79 $[79, 79, w^3 + w^2 - 2 w - 5]$ $-e - 2$
79 $[79, 79, w^3 - w^2 - 4 w - 1]$ $-4 e + 2$
81 $[81, 3, -3]$ $-4 e + 4$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, w]$ $-1$
$31$ $[31, 31, -w^3 + w^2 + 4 w - 1]$ $-1$