Properties

Label 4.4.1957.1-81.1-c
Base field 4.4.1957.1
Weight $[2, 2, 2, 2]$
Level norm $81$
Level $[81, 3, 3]$
Dimension $2$
CM no
Base change no

Related objects

Downloads

Learn more

Base field 4.4.1957.1

Generator \(w\), with minimal polynomial \(x^4 - 4 x^2 - x + 1\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[81, 3, 3]$
Dimension: $2$
CM: no
Base change: no
Newspace dimension: $5$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^2 - x - 21\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
3 $[3, 3, -w^3 + 3 w + 1]$ $-1$
7 $[7, 7, -w^2 + 2]$ $\phantom{-}e$
16 $[16, 2, 2]$ $\phantom{-}4$
19 $[19, 19, -w^3 + w^2 + 4 w]$ $\phantom{-}e + 3$
23 $[23, 23, w^3 + w^2 - 4 w - 2]$ $-6$
27 $[27, 3, -2 w^3 + w^2 + 6 w - 1]$ $-1$
31 $[31, 31, -w^3 + 5 w]$ $-e$
37 $[37, 37, -w^3 + 5 w + 1]$ $-e - 1$
43 $[43, 43, w^2 + w - 3]$ $-e + 3$
43 $[43, 43, -w^2 + 2 w + 3]$ $\phantom{-}e - 3$
47 $[47, 47, -w^3 + w^2 + 2 w + 2]$ $\phantom{-}6$
47 $[47, 47, 3 w^3 - w^2 - 10 w - 2]$ $-6$
53 $[53, 53, -w^3 + w^2 + 2 w - 3]$ $\phantom{-}0$
59 $[59, 59, -2 w^3 + w^2 + 8 w + 1]$ $\phantom{-}2 e + 4$
59 $[59, 59, w^3 - 2 w^2 - 3 w + 3]$ $-2 e - 4$
61 $[61, 61, -w^3 + w^2 + w - 2]$ $-e + 5$
67 $[67, 67, 2 w^3 - 5 w - 2]$ $\phantom{-}e + 4$
71 $[71, 71, 2 w^2 - w - 3]$ $\phantom{-}0$
73 $[73, 73, 2 w^2 - w - 5]$ $-e + 8$
73 $[73, 73, w^3 - 2 w^2 - 2 w + 5]$ $-e + 3$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$3$ $[3, 3, -w^3 + 3 w + 1]$ $1$
$27$ $[27, 3, -2 w^3 + w^2 + 6 w - 1]$ $1$