Properties

Label 4.4.19025.1-20.1-d
Base field 4.4.19025.1
Weight $[2, 2, 2, 2]$
Level norm $20$
Level $[20, 10, w + 1]$
Dimension $4$
CM no
Base change no

Related objects

Downloads

Learn more

Base field 4.4.19025.1

Generator \(w\), with minimal polynomial \(x^4 - 2 x^3 - 13 x^2 + 14 x + 44\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[20, 10, w + 1]$
Dimension: $4$
CM: no
Base change: no
Newspace dimension: $35$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^4 + 4 x^3 + 2 x^2 - 4 x - 1\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
4 $[4, 2, w^2 - 2 w - 6]$ $\phantom{-}e$
4 $[4, 2, -w^2 + 7]$ $-1$
5 $[5, 5, -\frac{1}{2} w^3 + 2 w^2 + \frac{7}{2} w - 14]$ $\phantom{-}1$
5 $[5, 5, \frac{1}{2} w^3 + \frac{1}{2} w^2 - 6 w - 9]$ $-e^3 - 3 e^2 + 2$
11 $[11, 11, \frac{1}{2} w^3 - 2 w^2 - \frac{5}{2} w + 11]$ $\phantom{-}2 e^3 + 6 e^2 - 2 e - 6$
11 $[11, 11, \frac{1}{2} w^3 + \frac{1}{2} w^2 - 5 w - 7]$ $-2 e^2 - 3 e + 5$
31 $[31, 31, \frac{1}{2} w^2 + \frac{1}{2} w - 4]$ $-e^3 - 4 e^2 - 3 e + 2$
31 $[31, 31, -\frac{1}{2} w^2 + \frac{3}{2} w + 3]$ $\phantom{-}e^3 + 4 e^2 + 5 e - 2$
41 $[41, 41, \frac{1}{2} w^2 + \frac{1}{2} w - 6]$ $\phantom{-}e^3 + 4 e^2 + 3 e - 10$
41 $[41, 41, 2 w^3 - \frac{15}{2} w^2 - \frac{25}{2} w + 50]$ $-4 e^3 - 11 e^2 + e + 8$
41 $[41, 41, \frac{5}{2} w^2 - \frac{1}{2} w - 17]$ $-4 e^2 - 6 e + 6$
41 $[41, 41, \frac{1}{2} w^2 - \frac{3}{2} w - 5]$ $-2 e^3 - 6 e^2 - 4 e + 2$
61 $[61, 61, -\frac{1}{2} w^3 + w^2 + \frac{7}{2} w - 1]$ $-e^3 + 5 e$
61 $[61, 61, -\frac{1}{2} w^3 + \frac{1}{2} w^2 + 4 w - 3]$ $\phantom{-}3 e^3 + 13 e^2 + 9 e - 11$
71 $[71, 71, \frac{1}{2} w^3 + w^2 - \frac{11}{2} w - 13]$ $-4 e^3 - 11 e^2 + 5 e + 6$
71 $[71, 71, -\frac{1}{2} w^3 + \frac{5}{2} w^2 + 2 w - 17]$ $\phantom{-}3 e^3 + 13 e^2 + 7 e - 13$
81 $[81, 3, -3]$ $\phantom{-}6$
89 $[89, 89, -w^3 + \frac{3}{2} w^2 + \frac{13}{2} w - 9]$ $\phantom{-}6 e^3 + 17 e^2 + 4 e - 1$
89 $[89, 89, w^3 - \frac{7}{2} w^2 - \frac{11}{2} w + 20]$ $\phantom{-}e^3 + 6 e^2 + 6 e - 3$
89 $[89, 89, -w^3 - \frac{1}{2} w^2 + \frac{19}{2} w + 12]$ $\phantom{-}3 e^3 + 12 e^2 + 5 e - 14$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$4$ $[4, 2, -w^2 + 7]$ $1$
$5$ $[5, 5, -\frac{1}{2} w^3 + 2 w^2 + \frac{7}{2} w - 14]$ $-1$