Properties

Label 4.4.18625.1-11.1-d
Base field 4.4.18625.1
Weight $[2, 2, 2, 2]$
Level norm $11$
Level $[11, 11, -\frac{1}{6} w^3 + \frac{7}{3} w + \frac{11}{6}]$
Dimension $2$
CM no
Base change no

Related objects

Downloads

Learn more

Base field 4.4.18625.1

Generator \(w\), with minimal polynomial \(x^4 - x^3 - 14 x^2 + 9 x + 41\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[11, 11, -\frac{1}{6} w^3 + \frac{7}{3} w + \frac{11}{6}]$
Dimension: $2$
CM: no
Base change: no
Newspace dimension: $20$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^2 - x - 3\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
4 $[4, 2, \frac{1}{6} w^3 - \frac{7}{3} w - \frac{17}{6}]$ $\phantom{-}1$
4 $[4, 2, w - 3]$ $-2$
5 $[5, 5, -\frac{1}{6} w^3 + w^2 + \frac{1}{3} w - \frac{25}{6}]$ $\phantom{-}e$
9 $[9, 3, \frac{1}{6} w^3 - \frac{7}{3} w + \frac{13}{6}]$ $-e - 1$
9 $[9, 3, -w - 2]$ $\phantom{-}2$
11 $[11, 11, -\frac{1}{6} w^3 + \frac{7}{3} w + \frac{11}{6}]$ $\phantom{-}1$
11 $[11, 11, -w + 2]$ $\phantom{-}0$
41 $[41, 41, -w]$ $-2 e - 6$
41 $[41, 41, \frac{1}{6} w^3 - \frac{7}{3} w + \frac{1}{6}]$ $\phantom{-}4 e$
59 $[59, 59, -\frac{1}{6} w^3 + \frac{1}{3} w + \frac{23}{6}]$ $-3 e + 6$
59 $[59, 59, -\frac{1}{3} w^3 + \frac{11}{3} w + \frac{11}{3}]$ $-2 e$
61 $[61, 61, -\frac{5}{3} w^3 - 3 w^2 + \frac{46}{3} w + \frac{79}{3}]$ $-10$
61 $[61, 61, \frac{5}{6} w^3 + w^2 - \frac{23}{3} w - \frac{55}{6}]$ $\phantom{-}2 e + 8$
61 $[61, 61, w^3 + 2 w^2 - 9 w - 17]$ $-4 e + 2$
61 $[61, 61, -\frac{1}{6} w^3 + \frac{10}{3} w + \frac{35}{6}]$ $-5 e + 2$
71 $[71, 71, -\frac{1}{2} w^3 + 2 w^2 + 4 w - \frac{33}{2}]$ $-4 e + 6$
71 $[71, 71, \frac{1}{6} w^3 - w^2 - \frac{4}{3} w + \frac{67}{6}]$ $\phantom{-}6 e - 6$
79 $[79, 79, \frac{1}{2} w^3 - 3 w + \frac{1}{2}]$ $\phantom{-}10$
79 $[79, 79, -\frac{2}{3} w^3 + \frac{19}{3} w - \frac{2}{3}]$ $\phantom{-}7 e - 5$
89 $[89, 89, \frac{1}{2} w^3 + w^2 - 5 w - \frac{15}{2}]$ $-7 e$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$11$ $[11, 11, -\frac{1}{6} w^3 + \frac{7}{3} w + \frac{11}{6}]$ $-1$