Properties

Label 4.4.1125.1-145.2-b
Base field \(\Q(\zeta_{15})^+\)
Weight $[2, 2, 2, 2]$
Level norm $145$
Level $[145,145,w^3 - 4 w - 3]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\zeta_{15})^+\)

Generator \(w\), with minimal polynomial \(x^4 - x^3 - 4 x^2 + 4 x + 1\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2]$
Level: $[145,145,w^3 - 4 w - 3]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $6$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
5 $[5, 5, -w^2 + 1]$ $-1$
9 $[9, 3, w^3 + w^2 - 4 w - 3]$ $\phantom{-}4$
16 $[16, 2, 2]$ $\phantom{-}3$
29 $[29, 29, -w^3 - w^2 + 2 w + 3]$ $-2$
29 $[29, 29, -w^2 + w + 3]$ $-1$
29 $[29, 29, w^3 - w^2 - 4 w + 2]$ $-2$
29 $[29, 29, 2 w^3 + w^2 - 7 w]$ $-2$
31 $[31, 31, -2 w + 1]$ $\phantom{-}4$
31 $[31, 31, 2 w^2 - 5]$ $-10$
31 $[31, 31, 2 w^3 + 2 w^2 - 6 w - 3]$ $\phantom{-}4$
31 $[31, 31, 2 w^3 - 8 w + 1]$ $\phantom{-}4$
59 $[59, 59, w^3 + w^2 - 2 w - 5]$ $-4$
59 $[59, 59, -w^3 + 2 w^2 + 4 w - 5]$ $\phantom{-}10$
59 $[59, 59, -3 w^3 + 10 w - 4]$ $-4$
59 $[59, 59, -2 w^3 - w^2 + 7 w - 2]$ $-4$
61 $[61, 61, 4 w^3 + w^2 - 13 w - 1]$ $\phantom{-}6$
61 $[61, 61, 2 w^3 - w^2 - 5 w + 2]$ $\phantom{-}6$
61 $[61, 61, -3 w^3 - w^2 + 8 w]$ $-8$
61 $[61, 61, 3 w^3 - w^2 - 10 w + 5]$ $\phantom{-}6$
89 $[89, 89, w^3 + w^2 - w - 4]$ $-6$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$5$ $[5,5,-w^3 + 4 w - 2]$ $1$
$29$ $[29,29,-w^2 + w + 3]$ $1$