Properties

Label 3.3.49.1-127.2-a
Base field \(\Q(\zeta_{7})^+\)
Weight $[2, 2, 2]$
Level norm $127$
Level $[127,127,-2 w^2 + 2 w - 3]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more

Error: no document with id 201361921 found in table mf_hecke_traces.

Error: table True does not exist

Error: no document with id 201760394 found in table mf_hecke_traces.

Error: table True does not exist

Base field \(\Q(\zeta_{7})^+\)

Generator \(w\), with minimal polynomial \(x^3 - x^2 - 2 x + 1\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2]$
Level: $[127,127,-2 w^2 + 2 w - 3]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $1$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
7 $[7, 7, 2 w^2 - w - 3]$ $\phantom{-}2$
8 $[8, 2, 2]$ $-3$
13 $[13, 13, -w^2 - w + 3]$ $\phantom{-}2$
13 $[13, 13, -w^2 + 2 w + 2]$ $\phantom{-}2$
13 $[13, 13, -2 w^2 + w + 2]$ $-4$
27 $[27, 3, 3]$ $-2$
29 $[29, 29, 3 w^2 - 2 w - 4]$ $-6$
29 $[29, 29, 2 w^2 + w - 4]$ $\phantom{-}6$
29 $[29, 29, -w^2 + 3 w + 1]$ $\phantom{-}0$
41 $[41, 41, w^2 - w - 5]$ $\phantom{-}6$
41 $[41, 41, 2 w^2 - 3 w - 4]$ $\phantom{-}6$
41 $[41, 41, -3 w^2 + w + 3]$ $\phantom{-}0$
43 $[43, 43, w^2 + 2 w - 5]$ $-4$
43 $[43, 43, 2 w^2 + w - 5]$ $-4$
43 $[43, 43, 3 w^2 - 2 w - 3]$ $-10$
71 $[71, 71, 4 w^2 - 3 w - 5]$ $\phantom{-}0$
71 $[71, 71, 3 w^2 - 4 w - 5]$ $-12$
71 $[71, 71, -4 w^2 + w + 5]$ $\phantom{-}0$
83 $[83, 83, w^2 + w - 7]$ $\phantom{-}12$
83 $[83, 83, w^2 - 2 w - 6]$ $-12$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$127$ $[127,127,-2 w^2 + 2 w - 3]$ $-1$