Base field 3.3.316.1
Generator \(w\), with minimal polynomial \(x^3 - x^2 - 4 x + 2\); narrow class number \(1\) and class number \(1\).
Form
| Weight: | $[2, 2, 2]$ |
| Level: | $[128, 64, -3 w^2 - w + 6]$ |
| Dimension: | $1$ |
| CM: | no |
| Base change: | no |
| Newspace dimension: | $8$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
| Norm | Prime | Eigenvalue |
|---|---|---|
| 2 | $[2, 2, -w]$ | $\phantom{-}1$ |
| 2 | $[2, 2, w - 1]$ | $\phantom{-}0$ |
| 11 | $[11, 11, w^2 - w - 1]$ | $-2$ |
| 17 | $[17, 17, -w^2 - w + 3]$ | $\phantom{-}2$ |
| 19 | $[19, 19, w^2 - w + 1]$ | $-6$ |
| 23 | $[23, 23, 2 w - 3]$ | $-2$ |
| 27 | $[27, 3, 3]$ | $\phantom{-}2$ |
| 29 | $[29, 29, 2 w + 1]$ | $\phantom{-}2$ |
| 31 | $[31, 31, 2 w^2 - 2 w - 9]$ | $\phantom{-}6$ |
| 37 | $[37, 37, 2 w^2 - 2 w - 5]$ | $\phantom{-}2$ |
| 41 | $[41, 41, 2 w^2 - 9]$ | $\phantom{-}2$ |
| 43 | $[43, 43, w^2 + w - 5]$ | $\phantom{-}10$ |
| 43 | $[43, 43, -3 w^2 + w + 15]$ | $-4$ |
| 43 | $[43, 43, -2 w^2 + 2 w + 11]$ | $\phantom{-}8$ |
| 53 | $[53, 53, w^2 - w - 7]$ | $-2$ |
| 61 | $[61, 61, 4 w^2 - 2 w - 15]$ | $-2$ |
| 67 | $[67, 67, -5 w^2 + 3 w + 23]$ | $-8$ |
| 73 | $[73, 73, 2 w^2 - 3]$ | $\phantom{-}14$ |
| 73 | $[73, 73, -3 w^2 - w + 7]$ | $\phantom{-}2$ |
| 73 | $[73, 73, -6 w^2 + 4 w + 25]$ | $\phantom{-}10$ |
Atkin-Lehner eigenvalues
| Norm | Prime | Eigenvalue |
|---|---|---|
| $2$ | $[2, 2, -w]$ | $-1$ |
| $2$ | $[2, 2, w - 1]$ | $1$ |