Properties

Label 3.3.257.1-49.2-d
Base field 3.3.257.1
Weight $[2, 2, 2]$
Level norm $49$
Level $[49, 49, w^2 + w + 1]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more

Base field 3.3.257.1

Generator \(w\), with minimal polynomial \(x^3 - x^2 - 4 x + 3\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2, 2]$
Level: $[49, 49, w^2 + w + 1]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $8$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
3 $[3, 3, w]$ $-3$
5 $[5, 5, w + 1]$ $-1$
7 $[7, 7, -w^2 + 2]$ $\phantom{-}0$
8 $[8, 2, 2]$ $-5$
9 $[9, 3, -w^2 + w + 4]$ $-4$
19 $[19, 19, w^2 + w - 4]$ $-1$
25 $[25, 5, -w^2 + 2 w + 2]$ $-2$
37 $[37, 37, 2 w + 1]$ $\phantom{-}10$
41 $[41, 41, -2 w^2 - w + 7]$ $\phantom{-}0$
43 $[43, 43, -2 w^2 + 5]$ $\phantom{-}2$
47 $[47, 47, 3 w - 4]$ $-1$
49 $[49, 7, 2 w^2 - w - 5]$ $-6$
53 $[53, 53, -2 w^2 + 2 w + 7]$ $-2$
61 $[61, 61, -w^2 - 3 w + 4]$ $-8$
61 $[61, 61, 3 w^2 - w - 10]$ $-1$
61 $[61, 61, w^2 - 2 w - 4]$ $-8$
67 $[67, 67, 2 w^2 - w - 4]$ $-2$
67 $[67, 67, 2 w^2 - w - 2]$ $\phantom{-}12$
67 $[67, 67, w^2 + 2 w - 5]$ $-9$
71 $[71, 71, -2 w^2 - w + 10]$ $\phantom{-}9$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$7$ $[7, 7, -w^2 + 2]$ $-1$