Properties

Label 3.3.148.1-464.1-e
Base field 3.3.148.1
Weight $[2, 2, 2]$
Level norm $464$
Level $[464, 116, -2 w^2 - 2 w - 4]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more

Base field 3.3.148.1

Generator \(w\), with minimal polynomial \(x^3 - x^2 - 3 x + 1\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2]$
Level: $[464, 116, -2 w^2 - 2 w - 4]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $14$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w - 1]$ $\phantom{-}0$
5 $[5, 5, -w^2 + w + 1]$ $-1$
13 $[13, 13, -w^2 + 2 w + 2]$ $\phantom{-}0$
17 $[17, 17, 2 w + 1]$ $-2$
19 $[19, 19, -w^2 + 2 w + 4]$ $-4$
23 $[23, 23, -w^2 - w + 3]$ $\phantom{-}1$
25 $[25, 5, -2 w^2 + w + 4]$ $\phantom{-}4$
27 $[27, 3, 3]$ $-2$
29 $[29, 29, w^2 - 3 w - 1]$ $-1$
31 $[31, 31, 2 w^2 - 2 w - 3]$ $\phantom{-}4$
37 $[37, 37, w^2 + w - 5]$ $\phantom{-}7$
37 $[37, 37, w - 4]$ $\phantom{-}4$
43 $[43, 43, 2 w^2 - w - 2]$ $\phantom{-}1$
59 $[59, 59, 2 w^2 - 3 w - 6]$ $\phantom{-}6$
61 $[61, 61, -3 w^2 + 4 w + 4]$ $\phantom{-}5$
67 $[67, 67, -w - 4]$ $\phantom{-}8$
67 $[67, 67, -3 w^2 + 8]$ $-10$
67 $[67, 67, w^2 - 3 w - 3]$ $\phantom{-}15$
79 $[79, 79, w^2 + 2 w - 4]$ $-1$
89 $[89, 89, 3 w^2 - 3 w - 5]$ $-1$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$29$ $[29, 29, w^2 - 3 w - 1]$ $1$