Properties

Label 3.3.148.1-43.1-b
Base field 3.3.148.1
Weight $[2, 2, 2]$
Level norm $43$
Level $[43, 43, 2 w^2 - w - 2]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more

Error: table mf_hecke_newspace_traces does not exist

Error: table mf_hecke_newspace_traces does not exist

Base field 3.3.148.1

Generator \(w\), with minimal polynomial \(x^3 - x^2 - 3 x + 1\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2]$
Level: $[43, 43, 2 w^2 - w - 2]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $4$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w - 1]$ $\phantom{-}0$
5 $[5, 5, -w^2 + w + 1]$ $-4$
13 $[13, 13, -w^2 + 2 w + 2]$ $\phantom{-}2$
17 $[17, 17, 2 w + 1]$ $-4$
19 $[19, 19, -w^2 + 2 w + 4]$ $-4$
23 $[23, 23, -w^2 - w + 3]$ $-4$
25 $[25, 5, -2 w^2 + w + 4]$ $-2$
27 $[27, 3, 3]$ $\phantom{-}2$
29 $[29, 29, w^2 - 3 w - 1]$ $-2$
31 $[31, 31, 2 w^2 - 2 w - 3]$ $-10$
37 $[37, 37, w^2 + w - 5]$ $-2$
37 $[37, 37, w - 4]$ $-8$
43 $[43, 43, 2 w^2 - w - 2]$ $-1$
59 $[59, 59, 2 w^2 - 3 w - 6]$ $-2$
61 $[61, 61, -3 w^2 + 4 w + 4]$ $\phantom{-}10$
67 $[67, 67, -w - 4]$ $\phantom{-}4$
67 $[67, 67, -3 w^2 + 8]$ $-8$
67 $[67, 67, w^2 - 3 w - 3]$ $-10$
79 $[79, 79, w^2 + 2 w - 4]$ $-12$
89 $[89, 89, 3 w^2 - 3 w - 5]$ $-4$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$43$ $[43, 43, 2 w^2 - w - 2]$ $1$