Properties

Label 3.3.148.1-29.1-a
Base field 3.3.148.1
Weight $[2, 2, 2]$
Level norm $29$
Level $[29, 29, w^2 - 3 w - 1]$
Dimension $2$
CM no
Base change no

Related objects

Downloads

Learn more

Base field 3.3.148.1

Generator \(w\), with minimal polynomial \(x^3 - x^2 - 3 x + 1\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2, 2]$
Level: $[29, 29, w^2 - 3 w - 1]$
Dimension: $2$
CM: no
Base change: no
Newspace dimension: $2$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^2 - 2\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, w - 1]$ $\phantom{-}e$
5 $[5, 5, -w^2 + w + 1]$ $\phantom{-}2 e$
13 $[13, 13, -w^2 + 2 w + 2]$ $\phantom{-}0$
17 $[17, 17, 2 w + 1]$ $-2 e - 4$
19 $[19, 19, -w^2 + 2 w + 4]$ $-2 e - 2$
23 $[23, 23, -w^2 - w + 3]$ $-2 e + 2$
25 $[25, 5, -2 w^2 + w + 4]$ $-2 e + 4$
27 $[27, 3, 3]$ $-2 e + 6$
29 $[29, 29, w^2 - 3 w - 1]$ $\phantom{-}1$
31 $[31, 31, 2 w^2 - 2 w - 3]$ $\phantom{-}4$
37 $[37, 37, w^2 + w - 5]$ $\phantom{-}4 e - 2$
37 $[37, 37, w - 4]$ $-4$
43 $[43, 43, 2 w^2 - w - 2]$ $\phantom{-}4 e + 4$
59 $[59, 59, 2 w^2 - 3 w - 6]$ $\phantom{-}2 e - 2$
61 $[61, 61, -3 w^2 + 4 w + 4]$ $-8 e + 2$
67 $[67, 67, -w - 4]$ $-6 e + 2$
67 $[67, 67, -3 w^2 + 8]$ $-2 e - 10$
67 $[67, 67, w^2 - 3 w - 3]$ $-4 e - 4$
79 $[79, 79, w^2 + 2 w - 4]$ $-2 e + 2$
89 $[89, 89, 3 w^2 - 3 w - 5]$ $-12 e$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$29$ $[29, 29, w^2 - 3 w - 1]$ $-1$