Base field \(\Q(\sqrt{93}) \)
Generator \(w\), with minimal polynomial \(x^2 - x - 23\); narrow class number \(2\) and class number \(1\).
Form
| Weight: | $[2, 2]$ |
| Level: | $[28, 14, 2 w - 12]$ |
| Dimension: | $1$ |
| CM: | no |
| Base change: | no |
| Newspace dimension: | $26$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
| Norm | Prime | Eigenvalue |
|---|---|---|
| 3 | $[3, 3, -w + 5]$ | $\phantom{-}1$ |
| 4 | $[4, 2, 2]$ | $-1$ |
| 7 | $[7, 7, w - 6]$ | $\phantom{-}1$ |
| 7 | $[7, 7, -w - 5]$ | $-2$ |
| 11 | $[11, 11, -w - 3]$ | $\phantom{-}3$ |
| 11 | $[11, 11, w - 4]$ | $-2$ |
| 17 | $[17, 17, w + 2]$ | $-3$ |
| 17 | $[17, 17, w - 3]$ | $\phantom{-}2$ |
| 19 | $[19, 19, w + 6]$ | $\phantom{-}0$ |
| 19 | $[19, 19, -w + 7]$ | $\phantom{-}0$ |
| 23 | $[23, 23, w]$ | $-4$ |
| 23 | $[23, 23, w - 1]$ | $-4$ |
| 25 | $[25, 5, -5]$ | $-4$ |
| 29 | $[29, 29, -2 w + 9]$ | $\phantom{-}10$ |
| 29 | $[29, 29, 2 w + 7]$ | $\phantom{-}0$ |
| 31 | $[31, 31, 3 w - 17]$ | $\phantom{-}7$ |
| 53 | $[53, 53, 3 w - 14]$ | $\phantom{-}6$ |
| 53 | $[53, 53, -3 w - 11]$ | $-9$ |
| 67 | $[67, 67, -w - 9]$ | $\phantom{-}3$ |
| 67 | $[67, 67, w - 10]$ | $-2$ |
Atkin-Lehner eigenvalues
| Norm | Prime | Eigenvalue |
|---|---|---|
| $4$ | $[4, 2, 2]$ | $1$ |
| $7$ | $[7, 7, w - 6]$ | $-1$ |