Base field \(\Q(\sqrt{23}) \)
Generator \(w\), with minimal polynomial \(x^2 - 23\); narrow class number \(2\) and class number \(1\).
Form
| Weight: | $[2, 2]$ |
| Level: | $[184, 92, 10 w + 46]$ |
| Dimension: | $1$ |
| CM: | no |
| Base change: | yes |
| Newspace dimension: | $108$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
| Norm | Prime | Eigenvalue |
|---|---|---|
| 2 | $[2, 2, -w - 5]$ | $\phantom{-}0$ |
| 7 | $[7, 7, -w + 4]$ | $\phantom{-}2$ |
| 7 | $[7, 7, w + 4]$ | $\phantom{-}2$ |
| 9 | $[9, 3, 3]$ | $\phantom{-}3$ |
| 11 | $[11, 11, -2 w + 9]$ | $\phantom{-}0$ |
| 11 | $[11, 11, -2 w - 9]$ | $\phantom{-}0$ |
| 13 | $[13, 13, w + 6]$ | $-5$ |
| 13 | $[13, 13, -w + 6]$ | $-5$ |
| 19 | $[19, 19, -w - 2]$ | $-6$ |
| 19 | $[19, 19, w - 2]$ | $-6$ |
| 23 | $[23, 23, -w]$ | $-1$ |
| 25 | $[25, 5, -5]$ | $-10$ |
| 29 | $[29, 29, 7 w + 34]$ | $\phantom{-}9$ |
| 29 | $[29, 29, 2 w + 11]$ | $\phantom{-}9$ |
| 41 | $[41, 41, -w - 8]$ | $\phantom{-}3$ |
| 41 | $[41, 41, w - 8]$ | $\phantom{-}3$ |
| 43 | $[43, 43, 2 w - 7]$ | $\phantom{-}8$ |
| 43 | $[43, 43, -2 w - 7]$ | $\phantom{-}8$ |
| 67 | $[67, 67, 2 w - 5]$ | $-8$ |
| 67 | $[67, 67, -2 w - 5]$ | $-8$ |
Atkin-Lehner eigenvalues
| Norm | Prime | Eigenvalue |
|---|---|---|
| $2$ | $[2, 2, -w - 5]$ | $-1$ |
| $23$ | $[23, 23, -w]$ | $1$ |