Properties

Label 2.2.88.1-9.2-a
Base field \(\Q(\sqrt{22}) \)
Weight $[2, 2]$
Level norm $9$
Level $[9, 9, -4 w + 19]$
Dimension $1$
CM yes
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{22}) \)

Generator \(w\), with minimal polynomial \(x^2 - 22\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[9, 9, -4 w + 19]$
Dimension: $1$
CM: yes
Base change: no
Newspace dimension: $7$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -3 w + 14]$ $\phantom{-}0$
3 $[3, 3, -w + 5]$ $-1$
3 $[3, 3, w + 5]$ $\phantom{-}0$
7 $[7, 7, 2 w + 9]$ $\phantom{-}0$
7 $[7, 7, 2 w - 9]$ $\phantom{-}0$
11 $[11, 11, -7 w + 33]$ $\phantom{-}0$
13 $[13, 13, -w - 3]$ $\phantom{-}0$
13 $[13, 13, -w + 3]$ $\phantom{-}0$
25 $[25, 5, -5]$ $\phantom{-}1$
29 $[29, 29, 3 w + 13]$ $\phantom{-}0$
29 $[29, 29, -3 w + 13]$ $\phantom{-}0$
59 $[59, 59, -w - 9]$ $-15$
59 $[59, 59, w - 9]$ $\phantom{-}15$
61 $[61, 61, 11 w - 51]$ $\phantom{-}0$
61 $[61, 61, 25 w - 117]$ $\phantom{-}0$
67 $[67, 67, 9 w - 43]$ $-13$
67 $[67, 67, -9 w - 43]$ $-13$
79 $[79, 79, 2 w - 3]$ $\phantom{-}0$
79 $[79, 79, -2 w - 3]$ $\phantom{-}0$
89 $[89, 89, 4 w - 21]$ $-9$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$3$ $[3, 3, w + 5]$ $-1$