Properties

Label 2.2.88.1-88.1-b
Base field \(\Q(\sqrt{22}) \)
Weight $[2, 2]$
Level norm $88$
Level $[88, 44, -2 w]$
Dimension $1$
CM no
Base change yes

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{22}) \)

Generator \(w\), with minimal polynomial \(x^2 - 22\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[88, 44, -2 w]$
Dimension: $1$
CM: no
Base change: yes
Newspace dimension: $58$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -3 w + 14]$ $\phantom{-}0$
3 $[3, 3, -w + 5]$ $-3$
3 $[3, 3, w + 5]$ $-3$
7 $[7, 7, 2 w + 9]$ $-2$
7 $[7, 7, 2 w - 9]$ $-2$
11 $[11, 11, -7 w + 33]$ $-1$
13 $[13, 13, -w - 3]$ $\phantom{-}0$
13 $[13, 13, -w + 3]$ $\phantom{-}0$
25 $[25, 5, -5]$ $-1$
29 $[29, 29, 3 w + 13]$ $-8$
29 $[29, 29, -3 w + 13]$ $-8$
59 $[59, 59, -w - 9]$ $-1$
59 $[59, 59, w - 9]$ $-1$
61 $[61, 61, 11 w - 51]$ $\phantom{-}4$
61 $[61, 61, 25 w - 117]$ $\phantom{-}4$
67 $[67, 67, 9 w - 43]$ $-5$
67 $[67, 67, -9 w - 43]$ $-5$
79 $[79, 79, 2 w - 3]$ $\phantom{-}2$
79 $[79, 79, -2 w - 3]$ $\phantom{-}2$
89 $[89, 89, 4 w - 21]$ $\phantom{-}15$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, -3 w + 14]$ $1$
$11$ $[11, 11, -7 w + 33]$ $1$