Properties

Label 2.2.88.1-81.4-a
Base field \(\Q(\sqrt{22}) \)
Weight $[2, 2]$
Level norm $81$
Level $[81, 81, -2 w + 13]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{22}) \)

Generator \(w\), with minimal polynomial \(x^2 - 22\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[81, 81, -2 w + 13]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $92$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -3 w + 14]$ $\phantom{-}2$
3 $[3, 3, -w + 5]$ $\phantom{-}0$
3 $[3, 3, w + 5]$ $\phantom{-}0$
7 $[7, 7, 2 w + 9]$ $\phantom{-}0$
7 $[7, 7, 2 w - 9]$ $\phantom{-}4$
11 $[11, 11, -7 w + 33]$ $-3$
13 $[13, 13, -w - 3]$ $-4$
13 $[13, 13, -w + 3]$ $\phantom{-}4$
25 $[25, 5, -5]$ $-7$
29 $[29, 29, 3 w + 13]$ $-4$
29 $[29, 29, -3 w + 13]$ $\phantom{-}0$
59 $[59, 59, -w - 9]$ $-11$
59 $[59, 59, w - 9]$ $\phantom{-}5$
61 $[61, 61, 11 w - 51]$ $-8$
61 $[61, 61, 25 w - 117]$ $\phantom{-}0$
67 $[67, 67, 9 w - 43]$ $\phantom{-}8$
67 $[67, 67, -9 w - 43]$ $\phantom{-}7$
79 $[79, 79, 2 w - 3]$ $-12$
79 $[79, 79, -2 w - 3]$ $-4$
89 $[89, 89, 4 w - 21]$ $\phantom{-}17$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$3$ $[3, 3, -w + 5]$ $-1$