Base field \(\Q(\sqrt{85}) \)
Generator \(w\), with minimal polynomial \(x^2 - x - 21\); narrow class number \(2\) and class number \(2\).
Form
| Weight: | $[2, 2]$ |
| Level: | $[121, 11, -11]$ |
| Dimension: | $1$ |
| CM: | no |
| Base change: | yes |
| Newspace dimension: | $362$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
| Norm | Prime | Eigenvalue |
|---|---|---|
| 3 | $[3, 3, w]$ | $-1$ |
| 3 | $[3, 3, w + 2]$ | $-1$ |
| 4 | $[4, 2, 2]$ | $\phantom{-}0$ |
| 5 | $[5, 5, w + 2]$ | $\phantom{-}1$ |
| 7 | $[7, 7, w]$ | $-2$ |
| 7 | $[7, 7, w + 6]$ | $-2$ |
| 17 | $[17, 17, w + 8]$ | $-2$ |
| 19 | $[19, 19, w + 1]$ | $\phantom{-}0$ |
| 19 | $[19, 19, w - 2]$ | $\phantom{-}0$ |
| 23 | $[23, 23, w + 9]$ | $-1$ |
| 23 | $[23, 23, w + 13]$ | $-1$ |
| 37 | $[37, 37, w + 11]$ | $\phantom{-}3$ |
| 37 | $[37, 37, w + 25]$ | $\phantom{-}3$ |
| 59 | $[59, 59, 3 w + 10]$ | $\phantom{-}5$ |
| 59 | $[59, 59, 3 w - 13]$ | $\phantom{-}5$ |
| 73 | $[73, 73, w + 15]$ | $\phantom{-}4$ |
| 73 | $[73, 73, w + 57]$ | $\phantom{-}4$ |
| 89 | $[89, 89, -w - 10]$ | $\phantom{-}15$ |
| 89 | $[89, 89, w - 11]$ | $\phantom{-}15$ |
| 97 | $[97, 97, w + 22]$ | $-7$ |
Atkin-Lehner eigenvalues
| Norm | Prime | Eigenvalue |
|---|---|---|
| $121$ | $[121, 11, -11]$ | $-1$ |