Properties

Label 2.2.8.1-3136.3-a
Base field \(\Q(\sqrt{2}) \)
Weight $[2, 2]$
Level norm $3136$
Level $[3136,392,-40 w + 8]$
Dimension $1$
CM yes
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{2}) \)

Generator \(w\), with minimal polynomial \(x^2 - 2\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[3136,392,-40 w + 8]$
Dimension: $1$
CM: yes
Base change: no
Newspace dimension: $41$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w]$ $\phantom{-}0$
7 $[7, 7, -2 w + 1]$ $\phantom{-}0$
7 $[7, 7, -2 w - 1]$ $\phantom{-}0$
9 $[9, 3, 3]$ $-2$
17 $[17, 17, 3 w + 1]$ $\phantom{-}6$
17 $[17, 17, 3 w - 1]$ $-6$
23 $[23, 23, w + 5]$ $\phantom{-}0$
23 $[23, 23, -w + 5]$ $\phantom{-}0$
25 $[25, 5, 5]$ $-10$
31 $[31, 31, 4 w + 1]$ $\phantom{-}0$
31 $[31, 31, -4 w + 1]$ $\phantom{-}0$
41 $[41, 41, 2 w - 7]$ $-6$
41 $[41, 41, -2 w - 7]$ $\phantom{-}6$
47 $[47, 47, -w - 7]$ $\phantom{-}0$
47 $[47, 47, w - 7]$ $\phantom{-}0$
71 $[71, 71, -6 w - 1]$ $\phantom{-}0$
71 $[71, 71, 6 w - 1]$ $\phantom{-}0$
73 $[73, 73, -7 w - 5]$ $-2$
73 $[73, 73, 7 w - 5]$ $\phantom{-}2$
79 $[79, 79, -w - 9]$ $\phantom{-}0$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2,2,w]$ $1$
$7$ $[7,7,2 w + 1]$ $-1$