Base field \(\Q(\sqrt{2}) \)
Generator \(w\), with minimal polynomial \(x^2 - 2\); narrow class number \(1\) and class number \(1\).
Form
| Weight: | $[2, 2]$ |
| Level: | $[1568,392,4 w - 40]$ |
| Dimension: | $1$ |
| CM: | no |
| Base change: | no |
| Newspace dimension: | $21$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
| Norm | Prime | Eigenvalue |
|---|---|---|
| 2 | $[2, 2, -w]$ | $\phantom{-}0$ |
| 7 | $[7, 7, -2 w + 1]$ | $-3$ |
| 7 | $[7, 7, -2 w - 1]$ | $\phantom{-}0$ |
| 9 | $[9, 3, 3]$ | $-4$ |
| 17 | $[17, 17, 3 w + 1]$ | $-1$ |
| 17 | $[17, 17, 3 w - 1]$ | $-7$ |
| 23 | $[23, 23, w + 5]$ | $\phantom{-}9$ |
| 23 | $[23, 23, -w + 5]$ | $\phantom{-}5$ |
| 25 | $[25, 5, 5]$ | $\phantom{-}2$ |
| 31 | $[31, 31, 4 w + 1]$ | $\phantom{-}4$ |
| 31 | $[31, 31, -4 w + 1]$ | $\phantom{-}2$ |
| 41 | $[41, 41, 2 w - 7]$ | $\phantom{-}0$ |
| 41 | $[41, 41, -2 w - 7]$ | $\phantom{-}8$ |
| 47 | $[47, 47, -w - 7]$ | $-2$ |
| 47 | $[47, 47, w - 7]$ | $\phantom{-}10$ |
| 71 | $[71, 71, -6 w - 1]$ | $\phantom{-}1$ |
| 71 | $[71, 71, 6 w - 1]$ | $\phantom{-}12$ |
| 73 | $[73, 73, -7 w - 5]$ | $\phantom{-}4$ |
| 73 | $[73, 73, 7 w - 5]$ | $-2$ |
| 79 | $[79, 79, -w - 9]$ | $\phantom{-}10$ |
Atkin-Lehner eigenvalues
| Norm | Prime | Eigenvalue |
|---|---|---|
| $2$ | $[2,2,w]$ | $1$ |
| $7$ | $[7,7,2 w + 1]$ | $1$ |