Base field \(\Q(\sqrt{77}) \)
Generator \(w\), with minimal polynomial \(x^2 - x - 19\); narrow class number \(2\) and class number \(1\).
Form
| Weight: | $[2, 2]$ |
| Level: | $[44, 22, 2 w + 10]$ |
| Dimension: | $1$ |
| CM: | no |
| Base change: | no |
| Newspace dimension: | $30$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
| Norm | Prime | Eigenvalue |
|---|---|---|
| 4 | $[4, 2, 2]$ | $-1$ |
| 7 | $[7, 7, -w - 3]$ | $-2$ |
| 9 | $[9, 3, 3]$ | $\phantom{-}0$ |
| 11 | $[11, 11, w + 5]$ | $\phantom{-}1$ |
| 13 | $[13, 13, w + 2]$ | $-1$ |
| 13 | $[13, 13, w - 3]$ | $\phantom{-}4$ |
| 17 | $[17, 17, w + 1]$ | $-2$ |
| 17 | $[17, 17, -w + 2]$ | $\phantom{-}3$ |
| 19 | $[19, 19, w]$ | $\phantom{-}0$ |
| 19 | $[19, 19, w - 1]$ | $-5$ |
| 23 | $[23, 23, w + 6]$ | $-6$ |
| 23 | $[23, 23, -w + 7]$ | $-1$ |
| 25 | $[25, 5, -5]$ | $\phantom{-}1$ |
| 37 | $[37, 37, -w - 7]$ | $-7$ |
| 37 | $[37, 37, w - 8]$ | $-2$ |
| 41 | $[41, 41, 2 w - 7]$ | $\phantom{-}7$ |
| 41 | $[41, 41, -2 w - 5]$ | $\phantom{-}12$ |
| 53 | $[53, 53, -w - 8]$ | $\phantom{-}9$ |
| 53 | $[53, 53, w - 9]$ | $-11$ |
| 61 | $[61, 61, 2 w - 5]$ | $-8$ |
Atkin-Lehner eigenvalues
| Norm | Prime | Eigenvalue |
|---|---|---|
| $4$ | $[4, 2, 2]$ | $1$ |
| $11$ | $[11, 11, w + 5]$ | $-1$ |