Properties

Label 2.2.76.1-76.1-b
Base field \(\Q(\sqrt{19}) \)
Weight $[2, 2]$
Level norm $76$
Level $[76, 38, 2 w]$
Dimension $1$
CM no
Base change yes

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{19}) \)

Generator \(w\), with minimal polynomial \(x^2 - 19\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[76, 38, 2 w]$
Dimension: $1$
CM: no
Base change: yes
Newspace dimension: $30$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -3 w - 13]$ $\phantom{-}0$
3 $[3, 3, w + 4]$ $-2$
3 $[3, 3, w - 4]$ $-2$
5 $[5, 5, 2 w + 9]$ $-1$
5 $[5, 5, -2 w + 9]$ $-1$
17 $[17, 17, w + 6]$ $-3$
17 $[17, 17, -w + 6]$ $-3$
19 $[19, 19, w]$ $\phantom{-}1$
31 $[31, 31, 20 w + 87]$ $-4$
31 $[31, 31, 7 w + 30]$ $-4$
49 $[49, 7, -7]$ $-5$
59 $[59, 59, 6 w + 25]$ $-6$
59 $[59, 59, -6 w + 25]$ $-6$
61 $[61, 61, -9 w - 40]$ $-13$
61 $[61, 61, 9 w - 40]$ $-13$
67 $[67, 67, 2 w - 3]$ $\phantom{-}12$
67 $[67, 67, -2 w - 3]$ $\phantom{-}12$
71 $[71, 71, 3 w + 10]$ $-2$
71 $[71, 71, 3 w - 10]$ $-2$
73 $[73, 73, 27 w + 118]$ $\phantom{-}9$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, -3 w - 13]$ $-1$
$19$ $[19, 19, w]$ $-1$