Base field \(\Q(\sqrt{19}) \)
Generator \(w\), with minimal polynomial \(x^2 - 19\); narrow class number \(2\) and class number \(1\).
Form
Weight: | $[2, 2]$ |
Level: | $[54, 18, 3 w - 15]$ |
Dimension: | $1$ |
CM: | no |
Base change: | no |
Newspace dimension: | $16$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
Norm | Prime | Eigenvalue |
---|---|---|
2 | $[2, 2, -3 w - 13]$ | $\phantom{-}1$ |
3 | $[3, 3, w + 4]$ | $\phantom{-}0$ |
3 | $[3, 3, w - 4]$ | $-1$ |
5 | $[5, 5, 2 w + 9]$ | $\phantom{-}0$ |
5 | $[5, 5, -2 w + 9]$ | $\phantom{-}0$ |
17 | $[17, 17, w + 6]$ | $\phantom{-}0$ |
17 | $[17, 17, -w + 6]$ | $-6$ |
19 | $[19, 19, w]$ | $\phantom{-}4$ |
31 | $[31, 31, 20 w + 87]$ | $-8$ |
31 | $[31, 31, 7 w + 30]$ | $-2$ |
49 | $[49, 7, -7]$ | $\phantom{-}2$ |
59 | $[59, 59, 6 w + 25]$ | $-12$ |
59 | $[59, 59, -6 w + 25]$ | $\phantom{-}12$ |
61 | $[61, 61, -9 w - 40]$ | $\phantom{-}2$ |
61 | $[61, 61, 9 w - 40]$ | $-10$ |
67 | $[67, 67, 2 w - 3]$ | $\phantom{-}4$ |
67 | $[67, 67, -2 w - 3]$ | $-8$ |
71 | $[71, 71, 3 w + 10]$ | $\phantom{-}0$ |
71 | $[71, 71, 3 w - 10]$ | $\phantom{-}0$ |
73 | $[73, 73, 27 w + 118]$ | $\phantom{-}2$ |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
$2$ | $[2, 2, -3 w - 13]$ | $-1$ |
$3$ | $[3, 3, w + 4]$ | $1$ |
$3$ | $[3, 3, w - 4]$ | $1$ |