Properties

Label 2.2.76.1-128.1-c
Base field \(\Q(\sqrt{19}) \)
Weight $[2, 2]$
Level norm $128$
Level $[128, 16, -24 w - 104]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{19}) \)

Generator \(w\), with minimal polynomial \(x^2 - 19\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[128, 16, -24 w - 104]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $76$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -3 w - 13]$ $\phantom{-}0$
3 $[3, 3, w + 4]$ $-3$
3 $[3, 3, w - 4]$ $-1$
5 $[5, 5, 2 w + 9]$ $\phantom{-}0$
5 $[5, 5, -2 w + 9]$ $-4$
17 $[17, 17, w + 6]$ $\phantom{-}7$
17 $[17, 17, -w + 6]$ $\phantom{-}7$
19 $[19, 19, w]$ $\phantom{-}4$
31 $[31, 31, 20 w + 87]$ $\phantom{-}2$
31 $[31, 31, 7 w + 30]$ $-10$
49 $[49, 7, -7]$ $\phantom{-}5$
59 $[59, 59, 6 w + 25]$ $\phantom{-}9$
59 $[59, 59, -6 w + 25]$ $\phantom{-}3$
61 $[61, 61, -9 w - 40]$ $\phantom{-}0$
61 $[61, 61, 9 w - 40]$ $-8$
67 $[67, 67, 2 w - 3]$ $-7$
67 $[67, 67, -2 w - 3]$ $-13$
71 $[71, 71, 3 w + 10]$ $\phantom{-}2$
71 $[71, 71, 3 w - 10]$ $-6$
73 $[73, 73, 27 w + 118]$ $-9$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, -3 w - 13]$ $-1$