Base field \(\Q(\sqrt{65}) \)
Generator \(w\), with minimal polynomial \(x^2 - x - 16\); narrow class number \(2\) and class number \(2\).
Form
| Weight: | $[2, 2]$ |
| Level: | $[25, 5, 5]$ |
| Dimension: | $1$ |
| CM: | no |
| Base change: | yes |
| Newspace dimension: | $50$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
| Norm | Prime | Eigenvalue |
|---|---|---|
| 2 | $[2, 2, w]$ | $\phantom{-}1$ |
| 2 | $[2, 2, w + 1]$ | $\phantom{-}1$ |
| 5 | $[5, 5, w + 2]$ | $\phantom{-}0$ |
| 7 | $[7, 7, w + 1]$ | $-5$ |
| 7 | $[7, 7, w + 5]$ | $-5$ |
| 9 | $[9, 3, 3]$ | $\phantom{-}2$ |
| 13 | $[13, 13, w + 6]$ | $\phantom{-}4$ |
| 29 | $[29, 29, -2 w + 7]$ | $\phantom{-}1$ |
| 29 | $[29, 29, 2 w + 5]$ | $\phantom{-}1$ |
| 37 | $[37, 37, w + 9]$ | $\phantom{-}4$ |
| 37 | $[37, 37, w + 27]$ | $\phantom{-}4$ |
| 47 | $[47, 47, w + 10]$ | $-7$ |
| 47 | $[47, 47, w + 36]$ | $-7$ |
| 61 | $[61, 61, 2 w - 3]$ | $\phantom{-}1$ |
| 61 | $[61, 61, -2 w - 1]$ | $\phantom{-}1$ |
| 67 | $[67, 67, w + 23]$ | $\phantom{-}3$ |
| 67 | $[67, 67, w + 43]$ | $\phantom{-}3$ |
| 73 | $[73, 73, w + 24]$ | $-4$ |
| 73 | $[73, 73, w + 48]$ | $-4$ |
| 79 | $[79, 79, 2 w - 13]$ | $-10$ |
Atkin-Lehner eigenvalues
| Norm | Prime | Eigenvalue |
|---|---|---|
| $5$ | $[5, 5, w + 2]$ | $1$ |