Properties

Label 2.2.65.1-128.2-h
Base field \(\Q(\sqrt{65}) \)
Weight $[2, 2]$
Level norm $128$
Level $[128,16,-8 w + 8]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{65}) \)

Generator \(w\), with minimal polynomial \(x^2 - x - 16\); narrow class number \(2\) and class number \(2\).

Form

Weight: $[2, 2]$
Level: $[128,16,-8 w + 8]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $48$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w]$ $\phantom{-}0$
2 $[2, 2, w + 1]$ $\phantom{-}0$
5 $[5, 5, w + 2]$ $-2$
7 $[7, 7, w + 1]$ $\phantom{-}0$
7 $[7, 7, w + 5]$ $\phantom{-}4$
9 $[9, 3, 3]$ $\phantom{-}2$
13 $[13, 13, w + 6]$ $-2$
29 $[29, 29, -2 w + 7]$ $-2$
29 $[29, 29, 2 w + 5]$ $\phantom{-}6$
37 $[37, 37, w + 9]$ $\phantom{-}2$
37 $[37, 37, w + 27]$ $\phantom{-}10$
47 $[47, 47, w + 10]$ $\phantom{-}12$
47 $[47, 47, w + 36]$ $\phantom{-}0$
61 $[61, 61, 2 w - 3]$ $-2$
61 $[61, 61, -2 w - 1]$ $\phantom{-}6$
67 $[67, 67, w + 23]$ $-12$
67 $[67, 67, w + 43]$ $\phantom{-}8$
73 $[73, 73, w + 24]$ $\phantom{-}14$
73 $[73, 73, w + 48]$ $-2$
79 $[79, 79, 2 w - 13]$ $-8$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2,2,-w + 1]$ $1$
$2$ $[2,2,-w + 2]$ $1$