Properties

Label 2.2.5.1-256.1-c
Base field \(\Q(\sqrt{5}) \)
Weight $[2, 2]$
Level norm $256$
Level $[256, 16, 16]$
Dimension $1$
CM no
Base change yes

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{5}) \)

Generator \(w\), with minimal polynomial \(x^2 - x - 1\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[256, 16, 16]$
Dimension: $1$
CM: no
Base change: yes
Newspace dimension: $3$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
4 $[4, 2, 2]$ $\phantom{-}0$
5 $[5, 5, -2 w + 1]$ $-2$
9 $[9, 3, 3]$ $\phantom{-}2$
11 $[11, 11, -3 w + 2]$ $\phantom{-}4$
11 $[11, 11, -3 w + 1]$ $\phantom{-}4$
19 $[19, 19, -4 w + 3]$ $-4$
19 $[19, 19, -4 w + 1]$ $-4$
29 $[29, 29, w + 5]$ $-2$
29 $[29, 29, -w + 6]$ $-2$
31 $[31, 31, -5 w + 2]$ $\phantom{-}0$
31 $[31, 31, -5 w + 3]$ $\phantom{-}0$
41 $[41, 41, -6 w + 5]$ $\phantom{-}2$
41 $[41, 41, w - 7]$ $\phantom{-}2$
49 $[49, 7, -7]$ $\phantom{-}10$
59 $[59, 59, 2 w - 9]$ $-12$
59 $[59, 59, 7 w - 5]$ $-12$
61 $[61, 61, 3 w - 10]$ $-10$
61 $[61, 61, -3 w - 7]$ $-10$
71 $[71, 71, -8 w + 7]$ $-8$
71 $[71, 71, w - 9]$ $-8$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$4$ $[4, 2, 2]$ $1$